Electrochemical behaviour and biocompatibility of claddings developed using microwave route

Review paper

Authors

DOI:

https://doi.org/10.5599/jese.1604

Keywords:

Metallic implants, mechanical characteristics, corrosion resistance, hydroxyapatite
Graphical Abstract

Abstract

In recent years many different biomedical implants have been created for prolonged usage within the human body. The number of these implants has been steadily expanding. Mechanical characteristics of biomaterials, such as elastic modulus, hardness, tensile strength, and scratch resistance, are essential for implants. Biomechanical incompatibility is associated with implant fracture brought on by mechanical failure. The materials utilized to replace bone must have mechanical qualities comparable to those of bone. Metallic implants deteriorate due to wear, electrochemical breakdown, or a synergistic mix of the two. Biocompatible materials are used to repair or replace joints, fractured, or otherwise damaged bone. Corrosion is the main factor in hip implant failure. These characteristics also contain several other factors, such as solution factors, geometric factors, metallurgical factors, and mechanical factors. The mechanical properties of the implant materials were most important and had a considerable impact on the process of bone restoration. Metals have the highest tensile strength compared to other materials, followed by polymers and ceramics (except for zirconia). There are several issues with the metallic biomaterial that need to be fixed, including the release of harmful substances during metallic corrosion.

Downloads

Download data is not yet available.

References

K. Elayaraja, Investigations on the bioactivity and drug delivery of nanocrystalline hydroxyapatite composites thin films and its surface modification by swift heavy ion irradiation, PhD Thesis, Anna University, Chennai, India, 2013.

Indian Express, India suffers from the highest number of road accidents: WHO, 2011. https://indianexpress.com/article/news-archive/web/india-suffers-from-the-highest-number-of-road-accidents-who/ (Accessed April 6, 2022)

S. Bose, S. Tarafder, Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review, Acta Biomaterialia 8 (2012) 1401-1421. https://doi.org/10.1016/j.actbio.2011.11.017

R. Lindsay, Risk of New Vertebral Fracture in the Year Following a Fracture, JAMA 285 (2001) 320-323. https://doi.org/10.1001/jama.285.3.320

Kaur, Ghadirinejad, Oskouei, An Overview on the Tribological Performance of Titanium Alloys with Surface Modifications for Biomedical Applications, Lubricants 7 (2019) 65. https://doi.org/10.3390/lubricants7080065

S. Kurtz, K. Ong, E. Lau, F. Mowat, M. Halpern, Projections of Primary and Revision Hip and Knee Arthroplasty in the United States from 2005 to 2030, The Journal of Bone and Joint Surgery 89 (2007) 780-785. https://doi.org/10.2106/jbjs.f.00222

A. Mithal, B. Bansal, C. S. Kyer, P. Ebeling, The Asia-Pacific regional audit-epidemiology, costs, and burden of osteoporosis in India 2013: a report of International Osteoporosis Foundation, Indian Journal of Endocronology and Metabolism 18 (2014) 449-454. https://doi.org/10.4103/2230-8210.137485

M. Geetha, A. K. Singh, R. Asokamani, A. K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants, Progress in Materials Science 54 (2009) 397-425. https://doi.org/10.1016/j.pmatsci.2008.06.004

B. D. Ratner, S. J. Bryant, Biomaterials: Where We Have Been and Where We Are Going, Annual Review of Biomedical Engineering 6 (2004) 41-75. https://doi.org/10.1146/annurev.bioeng.6.040803.140027

D. F. Williams, On the mechanisms of biocompatibility, Biomaterials 29 (2008) 2941-2953. https://doi.org/10.1016/j.biomaterials.2008.04.023.

H. M. Kim, F. Miyaji, T. Kokubo, T. Nakamura, Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment, Journal of Materials Science: Materials in Medicine 8 (1997) 341-347. https://doi.org/10.1023/A:1018524731409

L.-D. Piveteau, B. Gasser, L. Schlapbach, Evaluating mechanical adhesion of sol-gel titanium dioxide coatings containing calcium phosphate for metal implant application, Biomaterials 21 (2000) 2193-2201. https://doi.org/10.1016/S0142-9612(00)00160-5

D. S. Brodke, S. Gollogly, R. Alexander Mohr, B.-K. Nguyen, A. T. Dailey, K. N. Bachus, Dynamic Cervical Plates: Biomechanical Evaluation of Load Sharing and Stiffness, Spine 26(12) (2001) 1324-1329. https://journals.lww.com/spinejournal/Fulltext/2001/06150/Dynamic_Cervical_Plates__Biomechanical_Evaluation.10.aspx

C. R. Kothapalli, M. Wei, R. Z. Legeros, M. T. Shaw, Influence of temperature and aging time on HA synthesized by the hydrothermal method, Journal of Material Science Material and Medicine 16 (2005) 441-446 https://doi.org/10.1007/s10856-005-6984-5

S. Spriano, M. Bronzoni, F. Rosalbino, E. Vern, New chemical treatment for bioactive titanium alloy with high corrosion resistance, Journal of Material Science Material and Medicine 16 (2005) 203-211. https://doi.org/10.1007/s10856-005-6681-4

S. Bose, A. Banerjee, S. Dasgupta, A. Bandyopadhyay, Synthesis, Processing, Mechanical, and Biological Property Characterization of Hydroxyapatite Whisker-Reinforced Hydroxyapatite Composites, Journal of the American Ceramic Society 92 (2009) 323-330. https://doi.org/10.1111/j.1551-2916.2008.02881

A. J. Nathanael, D. Mangalaraj, N. Ponpandian, Controlled growth and investigations on the morphology and mechanical properties of hydroxyapatite/titania nanocomposite thin films, Composite Science and Technology 70 (2010) 1645-1651. https://doi.org/10.1016/j.compscitech.2010.06.010

J. A. Toque, M. K. Herliansyah, M. Hamdi, A. Ide-Ektessabi, I. Sopyan, Adhesion failure behavior of sputtered calcium phosphate thin film coatings evaluated using microscratch testing, Journal of Mechanical Behaviour of Biomedical Materials 3 (2010) 324-330. https://doi.org/10.1016/j.jmbbm.2010.01.002.

R. Roest, B. A. Latella, G. Heness, B. Ben-Nissan, Adhesion of sol-gel derived hydroxyapatite nanocoatings on anodised pure titanium and titanium (Ti6Al4V) alloy substrates, Surface Coatings Technology 205 (2011) 3520-3529. https://doi.org/10.1016/j.surfcoat.2010.12.030

G. B. de Souza, G. G. de Lima, C. M. Lepienski, C. E. Foerster, N. K. Kuromoto, Nanomechanical properties of bioactive films grown on low energy ion implanted Ti, Surface Coatings Technology 204 (2010) 2944-2949. .https://doi.org/10.1016/j.surfcoat.2010.02.010

K. L. Ong, S. Lovald, J. Black, Orthopaedic Biomaterials in Research and Practice, CRC Press Boca Raton, USA, 2013. https://doi.org/10.1201/b16369

M. Spector, Biomaterial failure, Orthopedics Clinics of North America 23 (1992) 211-217. https://doi.org/10.1016/S0030-5898(20)31732-6

J. J. Jacobs, J. L. Gilbert, R. M. Urban, Current concepts review-corrosion of metal orthopaedic implants, The Journal of Bone & Joint Surgery 80 (1998) 268-282. https://journals.lww.com/jbjsjournal/Citation/1998/02000/Current_Concepts_Review___Corrosion_of_Metal.15.aspx

U. Kamachimudali, T. M. Sridhar, B. Raj, Corrosion of bio implants, Sadhana 28 (2003) 601-637. http://dx.doi.org/10.1007/BF02706450

H.-W. Kim, Y.-H. Koh, L.-H. Li, S. Lee, H.-E. Kim, Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method, Biomaterials 25 (2004) 2533-2538. https://doi.org/10.1016/j.biomaterials.2003.09.041

A. Balamurugan, G. Balossier, S. Kannan, S. Rajeswari, Elaboration of sol-gel derived apatite films on surgical grade stainless steel for biomedical applications, Materials Letters 60 (2006) 2288-2293. https://doi.org/10.1016/j.matlet.2005.12.126

A. Balamurugan, G. Balossier, D. Laurent-Maquin, S. Pina, A. H. S. Rebelo, J. Faure, J. M. F. Ferreira, An in vitro biological and anti-bacterial study on a sol-gel derived silver-incorporated bioglass system, Dental Materials 24 (2008) 1343-1351. https://doi.org/10.1016/j.dental.2008.02.015

C. Arnould, J. Denayer, M. Planckaert, J. Delhalle, Z. Mekhalif, Bilayers coating on titanium surface: the impact on the hydroxyapatite initiation, Journal of Colloid Interface Science 341 (2010) 75-82. https://doi.org/10.1016/j.jcis.2009.09.030

X. Ting Shen, J. Ying Li, X. Luo, Y. Feng, L. Ting Gai, F. ming He, Peri-implant marginal bone changes with implant-supported metal-ceramic or monolithic zirconia single crowns: A retrospective clinical study of 1 to 5 years, The Journal of Prosthetic Dentisitry 128(3) (2022) 368-374. https://doi.org/10.1016/j.prosdent.2020.12.010

M. M. Stevens, Biomaterials for bone tissue engineering, Materials Today. 11 (2008) 18-25. https://doi.org/10.1016/S1369-7021(08)70086-5

C. Liu, Z. Ren, Y. Xu, S. Pang, X. Zhao, Y. Zhao, Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review, Scanning 2018 (2018) 9216314. https://doi.org/10.1155/2018/9216314

J. Singh, S. K. Mohapatra, S. Kumar, Performance analysis of pump materials employed in bottom ash slurry erosion conditions, Jurnal Tribologi 30 (2021) 73-89. https://jurnaltribologi.mytribos.org/v30/JT-30-73-89.pdf

J. Singh, S. Kumar, S. Mohapatra, Study on role of particle shape in erosion wear of austenitic steel using image processing analysis technique, Proceedings of the Institution of Mechanical Engineers, Part J 233(5) (2019) 712-725. https://doi.org/10.1177/1350650118794698

J. Singh, S. Kumar, S. K. Mohapatra, Erosion tribo-performance of HVOF deposited Stellite-6 and Colmonoy-88 micron layers on SS-316L, Tribology International 147 (2018) 105262. https://doi.org/10.1016/j.triboint.2018.06.004

M. Singh, H. Vasudev, M. Singh, Surface protection of SS-316L with boron nitride based thin films using radio frequency magnetron sputtering technique, Journal of Electrochemical Science and Engineering 12(5) (2022) 851-863. https://doi.org/10.5599/jese.1247

J. Singh, S. Kumar, S. K. Mohapatra, Erosion tribo-performance of HVOF deposited Stellite-6 and Colmonoy-88 micron layers on SS-316L, Trribology International 147 (2020) 105262. https://doi.org/10.1016/j.triboint.2018.06.004

J. Singh, S. Kumar, S. K. Mohapatra, Tribological performance of Yttrium (III) and Zirconium (IV) ceramics reinforced WC-10Co4Cr cermet powder HVOF thermally sprayed on X2CrNiMo-17-12-2 steel, Ceramics International 45 (2019) 23126-23142. https://doi.org/10.1016/j.ceramint.2019.08.007

S .P. Pilipchuk, A. B. Plonka, A. Monje, A. D. Taut, A. Lanis, B. Kang, W. V. Giannobile, Tissue engineering for bone regeneration and osseointegration in the oral cavity, Dental Materials 31 (2015) 317-338. https://doi.org/10.1016/j.dental.2015.01.006

A. Rezaei, R. B. Golenji, F. Alipour, M. M. Hadavi, I. Mobasherpour, Hydroxyapatite/hydroxyapatite-magnesium double-layer coatings as potential candidates for surface modification of 316 LVM stainless steel implants, Ceramics International 46 (2020) 25374-25381. https://doi.org/10.1016/j.ceramint.2020.07.005

P. Malmberg, H. Nygren, Methods for the analysis of the composition of bone tissue, with a focus on imaging mass spectrometry (TOF‐SIMS), Proteomics 8 (2008) 3755-3762. https://doi.org/10.1002/pmic.200800198

A. Rabiei, T. Blalock, B. Thomas, J. Cuomo, Y. Yang, J. Ong, Microstructure, mechanical properties, and biological response to functionally graded HA coatings, Material Science and Engineering C 27 (2007) 529-533. https://doi.org/10.1016/j.msec.2006.05.036

J. L. Ong, L. C. Lucas, Auger electron spectroscopy and its use for the characterization of titanium and hydroxyapatite surfaces, Biomaterials 19 (1998) 455-464. https://doi.org/10.1016/S0142-9612(97)00224-X

H. Vasudev, L. Thakur, H. Singh, A. Bansal, Erosion behaviour of HVOF sprayed Alloy718-nano Al 2 O 3 composite coatings on grey cast iron at elevated temperature conditions, Surface Topography Materials and Properties 9 (2021) 035022. https://doi.org/10.1088/2051-672X/ac1c80

H. Vasudev, G. Prashar, L. Thakur, A. Bansal, Electrochemical Corrosion Behavior and Microstructural Characterization of HVOF Sprayed Inconel-718 Coating on Gray Cast Iron, Journal of Failure Analysis and Prevention 21 (2021) 250-260. https://doi.org/10.1007/s11668-020-01057-8

P. Singh, H. Vasudev, A. Bansal, Effect of post-heat treatment on the microstructural, mechanical, and bioactivity behavior of the microwave-assisted alumina-reinforced hydroxyapatite cladding, Proceedings of Institute of Mechanical Engineering Part E (2022) 095440892211161. https://doi.org/10.1177/09544089221116168

R. Singh, M. Toseef, J. Kumar, J. Singh, Benefits and Challenges in Additive Manufacturing and Its Applications, in Sustainable Advanced Manufacturing and Materials Processing, S. Kaushal, I. Singh, S. Singh, A. Gupta (Eds.), CRC Press, Boca Raton, 2022, 137-157. https://doi.org/10.1201/9781003269298-8

D. Kumar, R. Yadav, J. Singh, Evolution and Adoption of Microwave Claddings in Modern Engineering Applications, in Advance Microwave Process Engineering Materials, CRC Press, Boca Raton, 2022, 134-153. https://doi.org/10.1201/9781003248743-8

H. Vasudev, L. Thakur, H. Singh, A. Bansal, A study on processing and hot corrosion behaviour of HVOF sprayed Inconel718-nano Al2O3 coatings, Materials Today Communications 25 (2020) 101626. https://doi.org/10.1016/j.mtcomm.2020.101626

N. Eliaz, Corrosion of Metallic Biomaterials, Materials 12(3) (2019) 407. https://doi.org/10.3390%2Fma12030407

P. Singh, A. Bansal, H. Vasudev, P. Singh, In situ surface modification of stainless steel with hydroxyapatite using microwave heating, Surface Topography Materials and Properties 9 (2021) 035053. https://doi.org/10.1088/2051-672X/ac28a9

G. Prashar, H. Vasudev, L. Thakur, Influence of heat treatment on surface properties of HVOF deposited WC and Ni-based powder coatings: a review, Surface Topography Materials and Properties 9 (2021) 043002 https://doi.org/10.1088/2051-672X/ac3a52

G. Prashar, H. Vasudev, Structure-property correlation and high-temperature erosion performance of Inconel625-Al2O3 plasma-sprayed bimodal composite coatings, Surface Coatings and Technology 439 (2022) 128450. https://doi.org/10.1016/j.surfcoat.2022.128450

G. Prashar, H. Vasudev, L. Thakur, Performance of different coating materials against slurry erosion failure in hydrodynamic turbines, Engineering Failure and Analysis 115 (2020) 104622. https://doi.org/10.1016/j.engfailanal.2020.104622

G. Singh, H. Vasudev, A. Bansal, S. Vardhan, S. Sharma, Microwave cladding of Inconel-625 on mild steel substrate for corrosion protection, Material Research Express 7 (2020) 026512 https://doi.org/10.1088/2053-1591/ab6fa3

G. Singh, H. Vasudev, A. Bansal, S. Vardhan, Influence of heat treatment on the microstructure and corrosion properties of the Inconel-625 clad deposited by microwave heating, Surface Topography Materials and Properties 9 (2021) 025019. https://doi.org/10.1088/2051-672X/abfc61

H. Vasudev, P. Singh, L. Thakur, A. Bansal, Mechanical and microstructural characterization of microwave post processed Alloy-718 coating, Material Research Express 6 (2020) 12655. https://doi.org/10.1088/2053-1591/ab66fb

H. Vasudev, G. Prashar, L. Thakur, A. Bansal, Microstructural characterization and electrochemical corrosion behaviour of HVOF sprayed Alloy718-nanoAl2O3 composite coatings, Surface Topography Materials and Properties 9 (2021) 035003. https://doi.org/10.1088/2051-672X/ac1044

H. Vasudev, Wear Characteristics of Ni-WC Powder Deposited by Using a Microwave Route on Mild Steel, International Journal of Surface Engineering and Interdisciplinary Materials Scienc 8 (2020) 44-54. https://doi.org/10.4018/IJSEIMS.2020010104

H. Vasudev, G. Singh, A. Bansal, S. Vardhan, L. Thakur, Microwave heating and its applications in surface engineering: a review, Material Research Express 6 (2019) 102001. https://doi.org/10.1088/2053-1591/ab3674

J. Singh, S. Kumar, S.K. Mohapatra, Optimization of Erosion Wear Influencing Parameters of HVOF Sprayed Pumping Material for Coal-Water Slurry, Materials Today Proceedings 5 (2018) 23789-23795. https://doi.org/10.1016/j.matpr.2018.10.170

J. Singh, S. Kumar, G. Singh, Taguchi’s Approach For Optimization Of Tribo-Resistance Parameters Forss304, Materials Today Proceedings5 (2018) 5031-5038. https://doi.org/10.1016/j.matpr.2017.12.081

J. Singh, S. Singh, Neural network prediction of slurry erosion of heavy-duty pump impeller/casing materials 18Cr-8Ni, 16Cr-10Ni-2Mo, super duplex 24Cr-6Ni-3Mo-N, and grey cast iron, Wear 476 (2021) 203741. https://doi.org/10.1016/j.wear.2021.203741

J. Singh, S. Kumar, S.K. Mohapatra, Study on Solid Particle Erosion of Pump Materials by Fly Ash Slurry using Taguchi’s Orthogonal Array, Tribologia - Finnish Journal of Tribology 38 (2021) 31-38. https://doi.org/10.30678/fjt.97530

J. Singh, H. S. Gill, H. Vasudev, Computational fluid dynamics analysis on effect of particulate properties on erosive degradation of pipe bends, International Journal of Interactive Design and Manufacturing (2022). https://doi.org/10.1007/s12008-022-01094-7

J. Singh, S. Singh, J. Pal Singh, Investigation on wall thickness reduction of hydropower pipeline underwent to erosion-corrosion process, Engineering Failure and Analysis 127 (2021) 105504. https://doi.org/10.1016/j.engfailanal.2021.105504

J. Singh, Application of Thermal Spray Coatings for Protection against Erosion, Abrasion, and Corrosion in Hydropower Plants and Offshore Industry, in Thermal Spray Coatings, L. Thakur, H. Vasudev (Eds.), CRC Press, Boca Raton, 2021, 243-283 https://doi.org/10.1201/9781003213185-10

J. Singh, S. Kumar, S.K. Mohapatra, S. Kumar, Shape simulation of solid particles by digital interpretations of scanning electron micrographs using IPA technique, Materials Today Proceedings 5 (2018) 17786-17791. https://doi.org/10.1016/j.matpr.2018.06.103

J. Singh, S. Kumar, J. P. Singh, P. Kumar, S. K. Mohapatra, CFD modeling of erosion wear in pipe bend for the flow of bottom ash suspension, Particulate Science and Technology 37 (2019) 275-285. https://doi.org/10.1080/02726351.2017.1364816

J. Singh, J. P. Singh, M. Singh, M. Szala, Computational analysis of solid particle-erosion produced by bottom ash slurry in 90° elbow, MATEC Web Confference 252 (2019) 04008. https://doi.org/0.1051/matecconf/201925204008

K. Kumar, S Kumar, G. Singh, J. P. Singh, J. Singh, Erosion Wear Investigation of HVOF Sprayed WC-10Co4Cr Coating on Slurry Pipeline Materials, Coatings 7(4) (2017) 54 https://doi.org/10.3390/coatings7040054

S. Kumar, M. Singh, J. Singh, J. P. Singh, S. Kumar, Rheological Characteristics of Uni/Bi-Variant Particulate Iron Ore Slurry: Artificial Neural Network Approach, Journal of Mining Science 55 (2019) 201-212. https://doi.org/10.1134/S1062739119025468

J. Singh, J.P. Singh, Numerical Analysis on Solid Particle Erosion in Elbow of a Slurry Conveying Circuit, Journal of Pipeline System Engineering Practice 12 (2021) 04020070. https://doi.org/10.1061/(asce)ps.1949-1204.0000518

J. Singh, A review on mechanisms and testing of wear in slurry pumps, pipeline circuits and hydraulic turbines, Journal of Tribology 143 (2021) 090801. https://doi.org/10.1115/1.4050977

J. Singh, Wear performance analysis and characterization of HVOF deposited Ni-20Cr2O3, Ni-30Al2O3, and Al2O3-13TiO2 coatings, Applied Surface Science Advances 6 (2021) 100161. https://doi.org/10.1016/j.apsadv.2021.100161

J. Singh, Tribo-performance analysis of HVOF sprayed 86WC-10Co4Cr & Ni-Cr2O3 on AISI 316L steel using DOE-ANN methodology, Indian Lubrication Tribological 73 (2021) 727-735. https://doi.org/10.1108/ILT-04-2020-0147

J. Singh, J.P. Singh, Performance analysis of erosion resistant Mo2C reinforced WC-CoCr coating for pump impeller with Taguchi’s method, Industrial Lubrication and Tribology 74 (2022) 431-441. https://doi.org/10.1108/ILT-05-2020-0155

J. Singh, S. Singh, Neural network supported study on erosive wear performance analysis of Y2O3/WC-10Co4Cr HVOF coating, Journal of King Saud University Engineering Scence (2022). https://doi.org/10.1016/j.jksues.2021.12.005

S. K, H. Vasudev, Microstructural and Mechanical Characterization of HVOF-Sprayed Ni-Based Alloy Coating, International Journal of Surface Engineering and Interdisciplinary Materials Science 10 (2022) 19. https://doi.org/10.4018/IJSEIMS.298705

J. Singh, S. Kumar, S.K. Mohapatra, An erosion and corrosion study on thermally sprayed WC-Co-Cr powder synergized with Mo2C/Y2O3/ZrO2 feedstock powders, Wear 438-439 (2019) 102751. https://doi.org/10.1016/j.wear.2019.01.082

J. Singh, S. Kumar, S.K. Mohapatra, Erosion wear performance of Ni-Cr-O and NiCrBSiFe-WC(Co) composite coatings deposited by HVOF technique, Industrial Lubrication Tribological 71 (2019) 610-619. https://doi.org/10.1108/ILT-04-2018-0149

J. Singh, Analysis on suitability of HVOF sprayed Ni-20Al, Ni-20Cr and Al-20Ti coatings in coal-ash slurry conditions using artificial neural network model, Industrial Lubrication Tribological 71 (2019) 972-982 https://doi.org/10.1108/ILT-12-2018-0460

G. Prashar, H. Vasudev, Surface topology analysis of plasma sprayed Inconel625-Al2O3 composite coating, Materials Today Proceedings 50 (2022) 607-611. https://doi.org/10.1016/j.matpr.2021.03.090

G. Prashar, H. Vasudev, High temperature erosion behavior of plasma sprayed Al2O3 coating on AISI-304 stainless steel, World Journal of Engineering 18 (2021) 760-766. https://doi.org/10.1108/WJE-10-2020-0476

G. Prashar, H. Vasudev, Structure-Property Correlation of Plasma-Sprayed Inconel625-Al2O3 Bimodal Composite Coatings for High-Temperature Oxidation Protection, Journal of Thermal Spray Technology 31 (2022) 2385-2408 .https://doi.org/10.1007/s11666-022-01466-1

J. Singh, S. Singh, A. Verma, Artificial intelligence in use of ZrO2 material in biomedical science, Journal of Electrochemical Science and Engineering (2022). https://doi.org/10.5599/jese.1498

J. Singh, S. Singh, R. Gill, Applications of biopolymer coatings in biomedical engineering, Journal of Electrochemical Science and Engineering (2022). https://doi.org/10.5599/jese.1460

Y. Iwai, T. Miyajima, A. Mizuno, T. Honda, T. Itou, S. Hogmark, Micro-Slurry-jet Erosion (MSE) testing of CVD TiC/TiN and TiC coatings, Wear 267 (2009) 264-269. https://doi.org/10.1016/j.wear.2009.02.014

Z. Feng, Y. Tzeng, J. E. Field, Solid particle impact of CVD diamond films, Thin Solid Films 212 (1992) 35-42. https://doi.org/10.1016/0040-6090(92)90497-Y

Y. Guo, Y. Su, R. Gu, Z. Zhang, G. Li, J. Lian, L. Ren, Enhanced corrosion resistance and biocompatibility of biodegradable magnesium alloy modified by calcium phosphate/collagen coating, Surface Coatings and Technology 401 (2020) 126318. https://doi.org/10.1016/j.surfcoat.2020.126318

J. Bhandari, F. Khan, R. Abbassi, V. Garaniya, R. Ojeda, Modelling of pitting corrosion in marine and offshore steel structures - A technical review, Journal of Loss Prevention in Process Industry 37 (2015) 39-62. https://doi.org/10.1016/j.jlp.2015.06.008

J. Du, Challenges in Molecular Dynamics Simulations of Multicomponent Oxide Glasses, in: Molecular Dynamics Simulations of Disordered Materials, C. Massobrio, J. Du, M. Bernasconi, P. S. Salmon (Eds.), Springer International Publishing AG Switzerland, 2015, 157-180. https://doi.org/10.1007/978-3-319-15675-0_7

Y. Zykova, V. Kudryavtseva, M. Gai, A. Kozelskaya, J. Frueh, G. Sukhorukov, S. Tverdokhlebov, Free-standing microchamber arrays as a biodegradable drug depot system for implant coatings, European Polymer Journal 114 (2019) 72-80. https://doi.org/10.1016/j.eurpolymj.2019.02.029

F. Cai, X. Huang, Q. Yang, Mechanical properties, sliding wear and solid particle erosion behaviors of plasma enhanced magnetron sputtering CrSiCN coating systems, Wear 324-325 (2015) 27-35. https://doi.org/10.1016/j.wear.2014.11.008

M. Singh, H. Vasudev, R. Kumar, Microstructural characterization of BN thin films using RF magnetron sputtering method, Materials Today Proeedings 26 (2020) 2277-2282. https://doi.org/10.1016/j.matpr.2020.02.493

M. Singh, H. Vasudev, R. Kumar, Corrosion and Tribological Behaviour of BN Thin Films Deposited Using Magnetron Sputtering, International Journal of Surface Engineering and Interdisciplinary Materials Science 9 (2021) 24-39. https://doi.org/10.4018/IJSEIMS.2021070102

Y. Wang, J. Stella, G. Darut, T. Poirier, H. Liao, APS prepared NiCrBSi-YSZ composite coatings for protection against cavitation erosion, Journal of Alloys and Compounds 699 (2017) 1095-1103. https://doi.org/10.1016/j.jallcom.2017.01.034

F. Zhang, Y. Liu, Q. Wang, Y. Han, Z. Yan, H. Chen, Y. Tan, Fabricating a heavy oil viscosity reducer with weak interaction effect: Synthesis and viscosity reduction mechanism, Colloids Interface Science and Communications 42 (2021) 100426. https://doi.org/10.1016/j.colcom.2021.100426

S. S. Rajahram, T. J. Harvey, R. J. K. Wood, Erosion-corrosion resistance of engineering materials in various test conditions, Wear 267 (2009) 244-254. https://doi.org/10.1016/j.

K. R. R. M. Reddy, N. Ramanaiah, M. M. M. Sarcar, Effect of heat treatment on corrosion behavior of duplex coatings, Journal of King Saud University - Engineering Sciences 29 (2017) 84-90. https://doi.org/10.1016/j.jksues.2014.08.002

A. F. Yetim, M. Y. Codur, M. Yazici, Using of artificial neural network for the prediction of tribological properties of plasma nitrided 316L stainless steel, Materials Letters 158 (2015) 170-173. https://doi.org/10.1016/j.matlet.2015.06.015

S. Buytoz, M. Ulutan, S. Islak, B. Kurt, O. Nuri Çelik, Microstructural and Wear Characteristics of High Velocity Oxygen Fuel (HVOF) Sprayed NiCrBSi-SiC Composite Coating on SAE 1030 Steel, Arabian Journal of Science and Engineering 38 (2013) 1481-1491. https://doi.org/10.1007/s13369-013-0536-y

U. B. Pal, S. C. Singhal, Electrochemical Vapor Deposition of Yttria‐Stabilized Zirconia Films, Journal of The Electrochemical Society 137 (1990) 2937-2941. https://doi.org/10.1149/1.2087102

K. Duan, R. Wang, Surface modifications of bone implants through wet chemistry, Journal of materials chemistry 16 (2006) 2309-2321. https://doi.org/10.1039/B517634

A. Das, M. Shukla, Hydroxyapatite coatings on high nitrogen stainless steel by laser rapid manufacturing, JOM 69 (2017) 2292-2296. https://doi.org/10.1007/s11837-017-2529-x

V. K. Balla, M. Das, S. Bose, G. D. J. Ram, I. Manna, Laser surface modification of 316 L stainless steel with bioactive hydroxyapatite, Material. Science Engineering C 33 (2013) 4594-4598. https://doi.org/10.1016/j.msec.2013.07.015

A. Bansal, S. Zafar, A. K. Sharma, Influence of heat treatment on microstructure of Inconel 718 microwave clads, Surface Engineering 33 (2017) 167-174. https://doi.org/10.1080/02670844.2016.1197559

R. R. Mishra, A. K. Sharma, Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing, Composite A 81 (2016) 78-97. https://doi.org/10.1016/j.compositesa.2015.10.035

D. Agrawal, Latest global developments in microwave materials processing, Material Research Innovations 14 (2010) 3-8. https://doi.org/10.1179/143307510X12599329342926

A. K . Sharma, M. S. Srinath, P. Kumar, Microwave joining of metallic materials, Indian Patent 2009 (1994). http://dx.doi.org/10.26634/jme.1.1.1213

P. Singh, A. Bansal, V. K. Verma, Hydroxyapatite reinforced surface modification of SS-316L by microwave processing, Surfaces and Interfaces 28 (2022) 101701. https://doi.org/10.1016/j.surfin.2021.101701

L.-G. Yu, X.-S. Zhang, The friction and wear properties of electroless Ni-polytetrafluoroethylene composite coating, Thin Solid Films 245 (1994) 98-103. https://doi.org/10.1016/0040-6090(94)90883-4

S.W. Huang, M. Samandi, M. Brandt, Abrasive wear performance and microstructure of laser clad WC/Ni layers, Wear 256 (2004) 1095-1105. https://doi.org/10.1016/0040-6090(94)90883-4

D. Gupta, A. K. Sharma, Microstructural characterization of cermet cladding developed through microwave irradiation, Journal of Materials Engineering and Performance 21 (2012) 2165-2172. https://doi.org/10.1007/s11665-012-0142-2

A. K. Sharma, D. Gupta, On microstructure and flexural strength of metal-ceramic composite cladding developed through microwave heating, Applied Surface Science 258 (2012) 5583-5592. http://dx.doi.org/10.1016/j.apsusc.2012.02.019

D. Gupta, A. K. Sharma, Investigation on sliding wear performance of WC10Co2Ni cladding developed through microwave irradiation, Wear 271 (2011) 1642-1650. http://dx.doi.org/10.1016/j.wear.2010.12.037

D. Gupta, A. K. Sharma, Development and microstructural characterization of microwave cladding on austenitic stainless steel, Surface Coatings and Technology 205 (2011) 5147-5155. https://doi.org/10.1016/j.surfcoat.2011.05.018

D. Gupta, A.K. Sharma, Copper coating on austenitic stainless steel using microwave hybrid heating, Proceedings of Institute of Mechanical Engineering Part :E Journal of Mechanical Engineering 226 (2012) 132-141. https://doi.org/10.1177/0954408911414652

D. Gupta, P. M. Bhovi, A. K. Sharma, S. Dutta, Development and characterization of microwave composite cladding, Journal of Manufacturing Processes 14 (2012) 243-249. https://doi.org/10.1016/j.jmapro.2012.05.007

S. Kaushal, D. Gupta, H. Bhowmick, An approach for functionally graded cladding of composite material on austenitic stainless steel substrate through microwave heating, Journal of Composite Materials 52 (2018) 301-312. https://doi.org/10.1177/0021998317705977

G. Singh, H. Vasudev, A. Bansal, S. Vardhan, Microwave cladding of Inconel-625 on mild steel substrate for corrosion protection, Materials Research Express 7 (2020) 26512. http://dx.doi.org/10.1088/2053-1591/ab6fa3

G. Singh, H. Vasudev, A. Bansal, S. Vardhan, Influence of heat treatment on the microstructure and corrosion properties of the Inconel-625 clad deposited by microwave heating, Surface Topography: Metrology and Properties 9 (2021) 25019. http://dx.doi.org/10.1088/2051-672X/abfc61

P. Singh, H. Vasudev, A. Bansal, Effect of post-heat treatment on the microstructural, mechanical, and bioactivity behavior of the microwave-assisted alumina-reinforced hydroxyapatite cladding, Proceedings of Institute of Mechanical Engineering Part E (2022) 09544089221116168. https://doi.org/10.1177/09544089221116168

P. Singh, A. Bansal, H. Vasudev, P. Singh, In situ surface modification of stainless steel with hydroxyapatite using microwave heating, Surface Topography: Metrology and Properties 9 (2021) 35053. https://doi.org/10.1088/2051-672X/ac28a9

Downloads

Published

30-12-2022 — Updated on 30-12-2022

How to Cite

Singh, G., Mehta, A. ., & Bansal, A. (2022). Electrochemical behaviour and biocompatibility of claddings developed using microwave route: Review paper. Journal of Electrochemical Science and Engineering, 13(1), 173–192. https://doi.org/10.5599/jese.1604

Issue

Section

Biomaterials