Vanadium oxide - poly(3,4-ethylenedioxythiophene) cathodes for zinc-ion batteries: effect of synthesis temperature

Original scientific paper

Authors

  • Filipp S. Volkov Department of Electrochemistry, Institute of Chemistry, St. Petersburg State UniversityUniversitetskaya nab. 7/9, St. Petersburg, 198504, Russian Federation https://orcid.org/0000-0002-7214-499X
  • Svetlana N. Eliseeva Department of Electrochemistry, Institute of Chemistry, St. Petersburg State UniversityUniversitetskaya nab. 7/9, St. Petersburg, 198504, Russian Federation
  • Mikhail A. Kamenskii Department of Electrochemistry, Institute of Chemistry, St. Petersburg State UniversityUniversitetskaya nab. 7/9, St. Petersburg, 198504, Russian Federation https://orcid.org/0000-0002-7542-0902
  • Alexey I. Volkov Department of Electrochemistry, Institute of Chemistry, St. Petersburg State UniversityUniversitetskaya nab. 7/9, St. Petersburg, 198504, Russian Federation https://orcid.org/0000-0002-8113-2595
  • Elena G. Tolstopjatova Department of Electrochemistry, Institute of Chemistry, St. Petersburg State UniversityUniversitetskaya nab. 7/9, St. Petersburg, 198504, Russian Federation https://orcid.org/0000-0002-8098-776X
  • Veniamin V. Kondratiev Department of Electrochemistry, Institute of Chemistry, St. Petersburg State UniversityUniversitetskaya nab. 7/9, St. Petersburg, 198504, Russian Federation https://orcid.org/0000-0002-9640-3765

DOI:

https://doi.org/10.5599/jese.1595

Keywords:

aqueous zinc-ion battery, hydrothermal synthesis, electrochemical performance, temperature of synthesis, structure
Graphical Abstract

Abstract

Vanadium oxide composites with conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) were obtained by one-step microwave-assisted hydrothermal synthesis at two different temperatures: 120 and 170 °C (denoted as V-120 and V-170, respectively). The structure and composition of the obtained samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, X-ray photoelectron spectro­scopy (XPS), and thermogravimetric (TG) analysis. The detailed study of the electro­chemical properties of the composites as cathodes of aqueous zinc-ion battery was per­formed cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) at different current densities and by electrochemical impedance spectroscopy (EIS). It was shown that V-120 demonstrated excellent electrochemical performance in the 0.3 to 1.4 V vs. Zn/Zn2+ potential range reaching specific capacities up to 390 mA∙h∙g−1 at 0.3 A∙g−1 with excel­lent capacity stability after 1000 charge-discharge cycles. Its functional parameters were found to be much better than those of the electrodes based on the V-170 composite obtained at a higher temperature. The effect of the synthesis temperature on the electro­chemical properties is discussed in terms of the crystallographic, compositional, and thermogravimetric properties of the samples.

Downloads

Download data is not yet available.

References

J. B. Goodenough, K. S. Park, The Li-ion rechargeable battery: A perspective, Journal of the American Chemical Society 135 (2013) 1167-1176. https://doi.org/10.1021/ja3091438

M. Armand, P. Axmann, D. Bresser, M. Copley, K. Edström, C. Ekberg, D. Guyomard, B. Lestriez, P. Novák, M. Petranikova, W. Porcher, S. Trabesinger, M. Wohlfahrt-Mehrens, H. Zhang, Lithium-ion batteries - Current state of the art and anticipated developments, Journal of Power Sources 479 (2020) 228708. https://doi.org/10.1016/j.jpowsour.2020.228708

D. Ouyang, M. Chen, Q. Huang, J. Weng, Z. Wang, J. Wang, A review on the thermal hazards of the lithium-ion battery and the corresponding countermeasures, Applied Sciences 9 (2019) 2483. https://doi.org/10.3390/app9122483

J. Y. Hwang, S. T. Myung, Y. K. Sun, Sodium-ion batteries: Present and future, Chemical Society Reviews 46 (2017) 3529-3614 https://doi.org/10.1039/c6cs00776g

K. Kubota, M. Dahbi, T. Hosaka, S. Kumakura, S. Komaba, Towards K-ion and Na-ion Batteries as “Beyond Li-Ion”, The Chemical Record 18 (2018) 459-479. https://doi.org/10.1002/tcr.201700057

J. Xie, Q. Zhang, Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes, Small 15 (2019) 1805061. https://doi.org/10.1002/smll.201805061

Y. Liang, H. Dong, D. Aurbach, Y. Yao, Current status and future directions of multivalent metal-ion batteries, Nature Energy 5 (2020) 646-656. https://doi.org/10.1038/s41560-020-0655-0

N. Borchers, S. Clark, B. Horstmann, K. Jayasayee, M. Juel, P. Stevens, Innovative zinc-based batteries, Journal of Power Sources 484 (2021) 229309. https://doi.org/10.1016/j.jpowsour.2020.229309

H. Liu, J.G. Wang, Z. You, C. Wei, F. Kang, B. Wei, Rechargeable aqueous zinc-ion batteries: Mechanism, design strategies and future perspectives, Materials Today 42 (2021) 73-98. https://doi.org/10.1016/j.mattod.2020.08.021

Y. Wu, T.Y. Song, L.N. Chen, A review on recent developments of vanadium-based cathode for rechargeable zinc-ion batteries, Tungsten 3 (2021) 289-304. https://doi.org/10.1007/s42864-021-00091-9

G. Yang, Q. Li, K. Ma, C. Hong, C. Wang, The degradation mechanism of vanadium oxide-based aqueous zinc-ion batteries, Journal of Materials Chemistry A 8 (2020) 8084-8095. https://doi.org/10.1039/d0ta00615g

X. Wang, Z. Zhang, B. Xi, W. Chen, Y. Jia, J. Feng, S. Xiong, Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries, ACS Nano 15 (2021) 9244-9272. https://doi.org/10.1021/acsnano.1c01389

J. Sun, Y. Zhao, Y. Liu, H. Jiang, C. Huang, M. Cui, T. Hu, C. Meng, Y. Zhang, “Three‐in‐one” strategy that ensures V2O5·nH2O with superior Zn2+ storage by simultaneous protonated polyaniline intercalation and encapsulation, Small Structures 3 (2022) 2100212. https://doi.org/10.1002/sstr.202100212

W. Zhang, C. Zuo, C. Tang, W. Tang, B. Lan, X. Fu, S. Dong, P. Luo, The current developments and perspectives of V2O5 as cathode for rechargeable aqueous zinc-ion batteries, Energy Technology 9 (2021) 2000789. https://doi.org/10.1002/ente.202000789

Y. Liu, X. Wu, Review of vanadium-based electrode materials for rechargeable aqueous zinc ion batteries, Journal of Energy Chemistry 56 (2021) 223-237. https://doi.org/10.1016/j.jechem.2020.08.016

X. Zhang, X. Sun, X. Li, X. Hu, S. Cai, C. Zheng, Recent progress in rate and cycling performance modifications of vanadium oxides cathode for lithium-ion batteries, Journal of Energy Chemistry 59 (2021) 343-363. https://doi.org/10.1016/j.jechem.2020.11.022

T.T. Lv, Y.Y. Liu, H. Wang, S.Y. Yang, C. Sen Liu, H. Pang, Crystal water enlarging the interlayer spacing of ultrathin V2O5·4VO2·2.72H2O nanobelts for high-performance aqueous zinc-ion battery, Chemical Engineering Journal 411 (2021) 128533. https://doi.org/10.1016/j.cej.2021.128533

M. Yan, P. He, Y. Chen, S. Wang, Q. Wei, K. Zhao, X. Xu, Q. An, Y. Shuang, Y. Shao, K.T. Mueller, L. Mai, J. Liu, J. Yang, Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries, Advanced Materials 30 (2018) 1703725. https://doi.org/10.1002/adma.201703725

K. Zhu, T. Wu, K. Huang, Understanding the dissolution and phase transformation mechanisms in aqueous Zn/α-V2O5 batteries, Chemistry of Materials 33 (2021) 4089-4098. https://doi.org/10.1021/acs.chemmater.1c00715

J. Shin, D.S. Choi, H.J. Lee, Y. Jung, J.W. Choi, Hydrated intercalation for high-performance aqueous zinc ion batteries, Advanced Energy Materials 9 (2019) 1900083. https://doi.org/10.1002/aenm.201900083

T. Wu, K. Zhu, C. Qin, K. Huang, Unraveling the role of structural water in bilayer V2O5 during Zn2+-intercalation: Insights from DFT calculations, Journal of Materials Chemistry A 7 (2019) 5612-5620. https://doi.org/10.1039/c8ta12014e

R. Dong, T. Zhang, J. Liu, H. Li, D. Hu, X. Liu, Q. Xu, Mechanistic insight into polypyrrole coating on V2O5 cathode for aqueous zinc-ion battery, ChemElectroChem 9 (2022) 202101441. https://doi.org/10.1002/celc.202101441

Y. Zhang, L. Xu, H. Jiang, Y. Liu, C. Meng, Polyaniline-expanded the interlayer spacing of hydrated vanadium pentoxide by the interface-intercalation for aqueous rechargeable Zn-ion batteries, Journal of Colloid and Interface Science 603 (2021) 641-650. https://doi.org/10.1016/j.jcis.2021.06.141

R. Li, H. Zhang, J. Yan, Q. Zheng, X. Li, A novel 3-phenylpropylamine intercalated molecular bronze with ultrahigh layer spacing as a high-rate and stable cathode for aqueous zinc-ion batteries, Fundamental Research 1 (2021) 425-431. https://doi.org/10.1016/j.fmre.2021.06.017

D. Xu, H. Wang, F. Li, Z. Guan, R. Wang, B. He, Y. Gong, X. Hu, Conformal conducting polymer shells on V2O5 nanosheet arrays as a high-rate and stable zinc-ion battery cathode, Advanced Materials Interfaces 6 (2019) 1801506. https://doi.org/10.1002/admi.201801506

X. Liu, G. Xu, Q. Zhang, S. Huang, L. Li, X. Wei, J. Cao, L. Yang, P.K. Chu, Ultrathin hybrid nanobelts of single-crystalline VO2 and poly(3,4-ethylenedioxythiophene) as cathode materials for aqueous zinc ion batteries with large capacity and high-rate capability, Journal of Power Sources 463 (2020) 228223. https://doi.org/10.1016/j.jpowsour.2020.228223

D. Bin, W. Huo, Y. Yuan, J. Huang, Y. Liu, Y. Zhang, F. Dong, Y. Wang, Y. Xia, Organic-inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery, Chem 6 (2020) 968-984. https://doi.org/10.1016/j.chempr.2020.02.001

W. Bi, G. Gao, G. Wu, M. Atif, M. S. AlSalhi, G. Cao, Sodium vanadate/PEDOT nanocables rich with oxygen vacancies for high energy conversion efficiency zinc ion batteries, Energy Storage Materials 40 (2021) 209-218. https://doi.org/10.1016/j.ensm.2021.05.003

Y. Du, X. Wang, J. Man, J. Sun, A novel organic-inorganic hybrid V2O5@polyaniline as high-performance cathode for aqueous zinc-ion batteries, Materials Letters 272 (2020) 127813. https://doi.org/10.1016/j.matlet.2020.127813

Z. Zhang, B. Xi, X. Wang, X. Ma, W. Chen, J. Feng, S. Xiong, Oxygen defects engineering of VO2·xH2O nanosheets via in situ polypyrrole polymerization for efficient aqueous zinc ion storage, Advanced Functional Materials 31 (2021) 2103070. https://doi.org/10.1002/adfm.202103070

H. Ling, R. Zhang, X. Ye, Z. Wen, J. Xia, X. Lu, In-situ synthesis of organic-inorganic hybrid thin film of PEDOT/V2O5 as hole transport layer for polymer solar cells, Solar Energy 190 (2019) 63-68. https://doi.org/10.1016/j.solener.2019.07.095

F.S. Volkov, E.G. Tolstopjatova, S.N. Eliseeva, M.A. Kamenskii, A.I. Vypritskaia, A.I. Volkov, V. V. Kondratiev, Vanadium(V) oxide coated by poly(3,4-ethylenedioxythiophene) as cathode for aqueous zinc-ion batteries with improved electrochemical performance, Materials Letters 308 (2022) 131210. https://doi.org/10.1016/j.matlet.2021.131210

F.S. Volkov, S.N. Eliseeva, M.A. Kamenskii, A.I. Volkov, E.G. Tolstopjatova, O. V. Glumov, L. Fu, V. V. Kondratiev, Vanadium oxide-poly(3,4-ethylenedioxythiophene) nanocomposite as high-performance cathode for aqueous Zn-ion batteries: The structural and electrochemical characterization, Nanomaterials 12 (2022) 3896. https://doi.org/10.3390/nano12213896

A. V. Murugan, C. W. Kwon, G. Campet, B. B. Kale, A. B. Mandale, S. R. Sainker, C. S. Gopinath, K. Vijayamohanan, A novel approach to prepare poly(3,4-ethylenedioxy¬thio-phene) nanoribbons between V2O5 layers by microwave irradiation, Journal of Physical Chemistry B 108 (2004) 10736-10742. https://doi.org/10.1021/jp048859g

M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Applied Surface Science 257 (2011) 2717-2730. https://doi.org/10.1016/j.apsusc.2010.10.051

G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse, An XPS study on the surface reduction of V2O5(0 0 1) induced by Ar+ ion bombardment, Surface Science 600 (2006) 3512-3517. https://doi.org/10.1016/j.susc.2006.07.006

M. C. Biesinger, B. P. Payne, L. W. M. Lau, A. Gerson, R. S. C. Smart, X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems, Surface and Interface Analysis 41 (2009) 324-332. https://doi.org/10.1002/sia.3026

S. Reddy, Q. Xiao, H. Liu, C. Li, S. Chen, C. Wang, K. Chiu, N. Chen, Y. Tu, S. Ramakrishna, L. He, Bionanotube/poly(3,4-ethylenedioxythiophene) nanohybrid as an electrode for the neural interface and dopamine sensor, ACS Applied Materials and Interfaces 11 (2019) 18254-18267. https://doi.org/10.1021/acsami.9b04862

E. Mitraka, M. J. Jafari, M. Vagin, X. Liu, M. Fahlman, T. Ederth, M. Berggren, M. P. Jonsson, X. Crispin, Oxygen-induced doping on reduced PEDOT, Journal of Materials Chemistry A 5 (2017) 4404-4412. https://doi.org/10.1039/C6TA10521A

H. Chen, J. Huang, S. Tian, L. Liu, T. Qin, L. Song, Y. Liu, Y. Zhang, X. Wu, S. Lei, S. Peng, Interlayer modification of pseudocapacitive vanadium oxide and Zn(H2O)n2+ migration regulation for ultrahigh rate and durable aqueous zinc-ion batteries, Advanced Science 8 (2021) 2004924. https://doi.org/10.1002/advs.202004924

A. Et Taouil, F. Lallemand, J. Y. Hihn, J. M. Melot, V. Blondeau-Patissier, B. Lakard, Doping properties of PEDOT films electrosynthesized under high frequency ultrasound irradiation, Ultrasonics Sonochemistry 18 (2011) 140-148. https://doi.org/10.1016/j.ultsonch.2010.04.003

G. Beamson, D. Briggs, High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database, Wiley, 1992. ISBN 9780471935926

W. Zong, H. Guo, Y. Ouyang, L. Mo, C. Zhou, G. Chao, J. Hofkens, Y. Xu, W. Wang, Y. E. Miao, G. He, I. P. Parkin, F. Lai, T. Liu, Topochemistry-driven synthesis of transition-metal selenides with weakened van der Waals force to enable 3D-printed Na-ion hybrid capacitors, Advanced Functional Materials 32 (2022) 2110016. https://doi.org/10.1002/adfm.202110016

H. Yan, Q. Ru, P. Gao, Z. Shi, Y. Gao, F. Chen, F. Chi-Chun Ling, L. Wei, Organic pillars pre-intercalated V4+-V2O5·3H2O nanocomposites with enlarged interlayer and mixed valence for aqueous Zn-ion storage, Applied Surface Science 534 (2020) 147608. https://doi.org/10.1016/j.apsusc.2020.147608

Z. Feng, J. Sun, Y. Liu, H. Jiang, T. Hu, M. Cui, F. Tian, C. Meng, Y. Zhang, Polypyrrole-intercalation tuning lamellar structure of V2O5·nH2O boosts fast zinc-ion kinetics for aqueous zinc-ion battery, Journal of Power Sources 536 (2022) 231489. https://doi.org/10.1016/j.jpowsour.2022.231489

S. Li, X. Wei, C. Wu, B. Zhang, S. Wu, Z. Lin, Constructing three-dimensional structured V2O5/conductive polymer composite with fast ion/electron transfer kinetics for aqueous zinc-ion battery, ACS Applied Energy Materials 4 (2021) 4208-4216. https://doi.org/10.1021/acsaem.1c00573

R. Li, F. Xing, T. Li, H. Zhang, J. Yan, Q. Zheng, X. Li, Intercalated polyaniline in V2O5 as a unique vanadium oxide bronze cathode for highly stable aqueous zinc ion battery, Energy Storage Materials 38 (2021) 590-598. https://doi.org/10.1016/j.ensm.2021.04.004

Downloads

Published

27-03-2023 — Updated on 27-03-2023

How to Cite

Volkov, F. S., Eliseeva, S. N., Kamenskii, M. A., Volkov, A. I., Tolstopjatova, E. G., & Kondratiev, V. V. (2023). Vanadium oxide - poly(3,4-ethylenedioxythiophene) cathodes for zinc-ion batteries: effect of synthesis temperature: Original scientific paper. Journal of Electrochemical Science and Engineering, 13(5), 725–737. https://doi.org/10.5599/jese.1595

Issue

Section

8th RSE SEE & 9th Kurt Schwabe symposium Special Issue

Funding data