ZnO/1-hexyl-3-methylimidazolium chloride paste electrode, highly sensitive lorazepam sensor

Original scientific paper

Authors

  • Seddigheh Chenarani Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
  • Mahmoud Ebrahimi Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran https://orcid.org/0000-0001-8637-9370
  • Vahid Arabali Department of Chemistry, Sari Branch, Islamic Azad University, Sari, Iran https://orcid.org/0000-0001-9093-3629
  • Safar Ali Beyramabadi Department of Chemistry, Sari Branch, Islamic Azad University, Sari, Iran https://orcid.org/0000-0001-9616-8550

DOI:

https://doi.org/10.5599/jese.1577

Keywords:

Pharmaceutical sensor, modified sensor, nano-catalyst, ionic liquid
Graphical Abstract

Abstract

The measurement of pharmaceutical compounds in biological fluids is considered an effective way to evaluate their effectiveness. On the other hand, lorazepam is a drug with good efficiency in treatment and some side effects, which measurement is very important. In this study, the ZnO nanoparticle was synthesized as an electrocatalyst by chemical precipitation method. Then a simple modification on paste electrode (PE) by ZnO nanoparticle (ZnO-NPs) and 1-hexyl-3-methylimidazolium chloride (HMImCl) was made and new sensor was used for sensing of lorazepam. The HMImCl/ZnO-NPs/PE showed catalytic behavior on oxidation signal of lorazepam and improved its signal about 2.17 times compared to unmodified PE. On the other hand, oxidation potential of lorazepam was reduced about 110 mV at surface of HMImCl/ZnO-NPs/PE compared to unmodified PE that confirm accelerating the electron exchange process after modification of sensor by HMImCl and ZnO-NPs as powerful catalysts. The HMImCl/ZnO-NPs/PE was used for monitoring of lorazepam in water and injection samples and results showed recovery data 98.5 to 103.5 % that are acceptable for a new sensor.

Downloads

Download data is not yet available.

References

M. Yoosefian, H. Karimi-Maleh, A. L. Sanati, A theoretical study of solvent effects on the characteristics of the intramolecular hydrogen bond in Droxidopa, Journal of Chemical Sciences 127(6) (2015) 1007-1013. https://doi.org/10.1007/s12039-015-0858-2

R. M. Fathy, A. Y. Mahfouz, Eco-friendly graphene oxide-based magnesium oxide nanocomposite synthesis using fungal fermented by-products and gamma rays for outstanding antimicrobial, antioxidant, and anticancer activities, Journal of Nanostructure in Chemistry 11(2) (2021) 301-321. https://doi.org/10.1007/s40097-020-00369-3

H. Bártíková, R. Podlipná, L. Skálová, Veterinary drugs in the environment and their toxicity to plants, Chemosphere 144(2) (2016) 2290-2301. https://doi.org/10.1016/j.chemosphere.2015.10.137

A. John, L. Benny, A. R. Cherian, S. Y. Narahari, A. Varghese, G. Hegde, Electrochemical sensors using conducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes: A review, Journal of Nanostructure in Chemistry 11(1) (2021) 1-31. https://doi.org/10.1007/s40097-020-00372-8

P. N. Asrami, M. S. Tehrani, P. A. Azar, S. A. Mozaffari, Impedimetric glucose biosensor based on nanostructure nickel oxide transducer fabricated by reactive RF magnetron sputtering system, Journal of Electroanalytical Chemistry 801(9) (2017) 258-266. https://doi.org/10.1016/j.jelechem.2017.07.052

B. Rezaei, A. Mokhtari, Chemiluminescence determination of promazine in human serum and drug formulations using Ru (phen) 32+–Ce (IV) system and a chemometrical optimization approach, Luminescence 24(3) (2009) 183-188. https://doi.org/10.1002/bio.1093

N. Erk, M. Kartal, Comparison of high-performance liquid chromatography and absorbance ratio methods for the determination of hydrochlorothiazide and lisinopril in pharmaceutical formulations, Analytical Letters 32(6) (1999) 1131-1141. https://doi.org/10.1080/00032719908542883.

R. Hurtubise, H. W. Latz, Fluorimetric determination of butylated hydroxy anisole in food products and packaging material, Journal of Agricultural and Food Chemistry 18(3) (1970) 377-380. https://doi.org/10.1021/jf60169a008

C. Lacey, G. McMahon, J. Bones, M. Morrissey, J. N. Tobin, An LC–MS method for the determination of pharmaceutical compounds in wastewater treatment plant influent and effluent samples, Talanta 75(4) (2008) 1089-1097. https://doi.org/10.1016/j.talanta.2008.01.011

S. Cheraghi, M. A. Taher, H. Karimi-Maleh, F. Karimi, M. Shabani-Nooshabadi, M. Alizadeh, A. A. Otman, N. Erk, P. V. Y. Raman, C. Karaman, Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids, Chemosphere 287(1) (2022) 132187. https://doi.org/10.1016/j.chemosphere.2021.132187

S. Chenarani, M. Ebrahimi, V. Arabali, S. A. Beyramabadi, Determination of Lorazepam Using the Electrocatalytic Effect of NiO/SWCNTs Modified Carbon Paste Electrode as a Powerful Sensor, Topics in Catalysis 65(5) (2022) 733-738. https://doi.org/10.1007/s11244-022-01561-1

H. Woelk, S. Schläfke, A multi-center, double-blind, randomised study of the Lavender oil preparation Silexan in comparison to Lorazepam for generalized anxiety disorder Phytomedicine 17(2) (2010) 94-99. https://doi.org/10.1016/j.phymed.2009.10.006

M. B. Scharf, J. A. Jacoby, Lorazepam—efficacy, side effects, and rebound phenomena, Clinical Pharmacology and Therapeutics 31(2) (1982) 175-179. https://doi.org/10.1038/clpt.1982.27

J. Ghasemi, A. Niazi, Two-and three-way chemometrics methods applied for spectrophotometric determination of lorazepam in pharmaceutical formulations and biological fluids, Analytica Chimica Acta 533(2) (2005) 169-177. https://doi.org/10.1016/j.aca.2004.11.012

M. Ghalkhani, N. Zare, F. Karimi, C. Karaman, M. Alizadeh, Y. Vasseghian, Recent advances in Ponceau dyes monitoring as food colorant substances by electrochemical sensors and developed procedures for their removal from real samples, Food and Chemical Toxicology 161(3) (2022) 112830. https://doi.org/10.1016/j.fct.2022.112830

P. Nasehi, M. S. Moghaddam, N. Rezaei-savadkouhi, M. Alizadeh, M. N. Yazdani, H. Agheli, Monitoring of Bisphenol A in water and soft drink products using electrochemical sensor amplified with TiO2-SWCNTs and ionic liquid, Journal of Food Measurement and Characterization 16(3) (2022) 2440-2445. https://doi.org/10.1007/s11694-022-01321-5

M. Alizadeh, E. Demir, N. Aydogdu, N. Zare, F. Karimi, S. M. Kandomal, H. Rokni, Y. Ghasemi, Recent advantages in electrochemical monitoring for the analysis of amaranth and carminic acid food colors, Food and Chemical Toxicology 163(5) (2022) 112929. https://doi.org/10.1016/j.fct.2022.112929

J. A. Buledi, N. Mahar, A. Mallah, A. R. Solangi, I. M. Palabiyik, N. Qambarani, F. Karimi, Y. Vasseghian, H. Karimi-Maleh. Electrochemical quantification of mancozeb through tungsten oxide/reduced graphene oxide nanocomposite: A potential method for environmental remediation, Food and Chemical Toxicology 161(3) (2022) 112843. https://doi.org/10.1016/j.fct.2022.112843

M. H. Karimi-Harandi, M. Shabani-Nooshabadi, R. Darabi, Simultaneous determination of citalopram and selegiline using an efficient electrochemical sensor based on ZIF-8 decorated with RGO and g-C3N4 in real samples, Analytica Chimica Acta 1203(4) (2022) 339662. https://doi.org/10.1016/j.aca.2022.339662

J. Cheng, Z. Lu, X. Zhao, X. Chen, Y. Zhu, H. Chu, Electrochemical performance of porous carbons derived from needle coke with different textures for supercapacitor electrode materials, Carbon Letters 31(1) (2021) 57-65. https://doi.org/10.1007/s42823-020-00149-7

H. Medetalibeyoğlu, An investigation on development of a molecular imprinted sensor with graphitic carbon nitride (g-C3N4) quantum dots for detection of acetaminophen, Carbon Letters 31(6) (2021) 1237-1248. https://doi.org/10.1007/s42823-021-00247-0

M. Mehmandoust, N. Erk, O. Karaman, F. Karimi, M. Bijad, C. Karaman, Three-dimensional porous reduced graphene oxide decorated with carbon quantum dots and platinum nanoparticles for highly selective determination of azo dye compound tartrazine, Food and Chemical Toxicology 158(12) (2021) 112698. https://doi.org/10.1016/j.fct.2021.112698

M. Roostaee, I. Sheikhshoaie, Fabrication of a sensitive sensor for determination of xanthine in the presence of uric acid and ascorbic acid by modifying a carbon paste sensor with Fe3O4@ Au core–shell and an ionic liquid, Journal of Food Measurement and Characterization 16(1) (2022) 731-739. https://doi.org/10.1007/s11694-021-01200-5

Z. Yang, Y. Zhong, X. Zhou, W. Zhang, Y. Yin, W. Fang, H. Xue, Metal-organic framework-based sensors for nitrite detection, Journal of Food Measurement and Characterization 16(4) (2022), 1572-1582. https://doi.org/10.1007/s11694-021-01270-5

T.I. Sebokolodi, D.S. Sipuka, T.R. Tsekeli, D. Nkosi, O.A. Arotiba, An electrochemical sensor for caffeine at a carbon nanofiber modified glassy carbon electrode, Journal of Food Measurement and Characterization 16(8) (2022) 2536-2544. https://doi.org/10.1007/s11694-022-01365-7

Y. Zhao, Y. Ma, R. Zhou, et al., Highly sensitive electrochemical detection of paraoxon ethyl in water and fruit samples based on defect-engineered graphene nanoribbons modified electrode, Journal of Food Measurement and Characterization 16(8) (2022) 2596-2603. https://doi.org/10.1007/s11694-022-01366-6

A. A. Ensafi, H. Karimi‐Maleh, S. Mallakpour, N‐(3, 4‐Dihydroxyphenethyl)‐3, 5‐dinitrobenzamide‐Modified Multiwall Carbon Nanotubes Paste Electrode as a Novel Sensor for Simultaneous Determination of Penicillamine, Uric acid, and Tryptophan, Electroanalysis 23(6) (2011) 1478-1487. https://doi.org/10.1002/elan.201000741

M. H. Karimi-Harandi, M., Shabani-Nooshabadi, R. Darabi, Cu-BTC Metal-Organic Frameworks as Catalytic Modifier for Ultrasensitive Electrochemical Determination of Methocarbamol in the Presence of Methadone, Journal of The Electrochemical Society 168(9) (2021) 097507. https://doi.org/10.1149/1945-7111/ac2468

M. Kumar, S. S. Kirupavathy, S. Shalini, Exploration on reduced graphene oxide/strontium pyro niobate electrode material for electrochemical energy storage applications, Carbon Letters 31(4) (2021) 619-633. https://doi.org/10.1007/s42823-020-00203-4

W. H. Danial, N.A. Norhisham, A. F. Ahmad Noorden, Z. A. Majid, K. Matsumura, A. Iqbal, A short review on electrochemical exfoliation of graphene and graphene quantum dots, Carbon Letters 31(3) (2021) 371-388. https://doi.org/10.1007/s42823-020-00203-4

H. Esmaeili, S. M. Mousavi, S. A. Hashemi, W. H. Chiang, S. A. Abnavi, Activated carbon@ MgO@ Fe3O4 as an efficient adsorbent for As (III) removal, Carbon Letters 31(5) (2021) 851-862. https://doi.org/10.1007/s42823-020-00186-2

J. Ma, J. Yuan, W. Ming, W. He, G. Zhang, H. Zhang, Y. Cao, Z. Jiang, Non-traditional processing of carbon nanotubes, Alexandria Engineering Journal 61(1) (2022) 597-617. https://doi.org/10.1016/j.aej.2021.06.041

R. Wu, C. Bi, X. Zhang, J. Wang, L. Wang, C. Fan, M. Wang, F. Shao, N. Li, Z. Zong, Y. Fan, Construction of two cobalt based bi-functional metal-organic frameworks for enhancing electrocatalytic water oxidation and photocatalytic disposals of hazardous aromatic dyes, Molecular Catalysis 505(4) (2021) 111450. https://doi.org/10.1016/j.mcat.2021.111450

J. Cao, A. Li, Y. Zhang, L. Mu, X. Huang, Y. Li, T. Yang, C. Zhang, C. Zhou, Highly efficient unsupported Co-doped nano-MoS2 catalysts for p-cresol hydrodeoxygenation, Molecular Catalysis 505(4) (2021), 111507. https://doi.org/10.1016/j.mcat.2021.111507

G. Costa, P.A. Lopes, A. L. Sanati, A. F. Silva, M. C. Freitas, A. T. D. Almedia, M. Tavakoli, 3D Printed Stretchable Liquid Gallium Battery, Advanced Functional Materials 32(27) (2022) 2113232. https://doi.org/10.1002/adfm.202113232.

M. Al Sharabati, R. Abokwiek, A. Al-Othman, M. Tawalbeh, C. Caraman, Y. Orooji, F. Karimi, Biodegradable polymers and their nano-composites for the removal of endocrine-disrupting chemicals (EDCs) from wastewater: a review, Environmental Research 202(11) (2021) 111694. https://doi.org/10.1016/j.envres.2021.111694.

S. Akhil, A. M. M. J. Saeed, S. S. Majety, B. Mullamuri, G. Majji, D. Bharatiya, V. S. S. Mosali, H. B. Bollikolla, B. Chandu, Cost effective biosynthetic approach for graphene exhibiting superior sonochemical dye removal capacity, Carbon Letters 31(6) (2021) 1215-1225. https://doi.org/10.1007/s42823-021-00245-2

S. Mpelane, N. Mketo, N. Bingwa, P.N. Nomngongo, Synthesis of mesoporous iron oxide nanoparticles for adsorptive removal of levofloxacin from aqueous solutions: Kinetics, isotherms, thermodynamics and mechanism, Alexandria Engineering Journal 61(11) (2022) 8457-8468. https://doi.org/10.1016/j.aej.2022.02.014

A. L. Sanati, A. Chambel, P. A. Lopes, T. Nikitin, R. Fausto, Laser‐Assisted Rapid Fabrication of Large‐Scale Graphene Oxide Transparent Conductors, Advanced Materials Interfaces 9(17) (2022) 2102343. https://doi.org/10.1002/admi.202102343

F. Karimi, A. Ayati, B. Tanhaei, A. L. Santi, S. Afshar, A. Kardan, Z. Dabirifar, C. Karaman, Removal of metal ions using a new magnetic chitosan nano-bio-adsorbent; A powerful approach in water treatment, Environmental Research 203(1) (2022) 111753. https://doi.org/10.1016/j.envres.2021.111753

C. Karaman, Orange peel derived‐nitrogen and sulfur Co‐doped carbon dots: a nano‐booster for enhancing ORR electrocatalytic performance of 3D graphene networks, Electroanalysis 33(5) (2021) 1356-1369. https://doi.org/10.1002/elan.202100018

A. Akça, O. Karaman, C. Karaman, Mechanistic insights into catalytic reduction of N2O by CO over Cu-embedded graphene: a density functional theory perspective, ECS Journal of Solid State Science and Technology 10(4) (2021) 041003. https://doi.org/10.1149/2162-8777/abf481

R. T. Hussain, A. S. Islam, M. Khairuddean, F. B. M. Suah, A polypyrrole/GO/ZnO nanocomposite modified pencil graphite electrode for the determination of andrographolide in aqueous samples, Alexandria Engineering Journal 61(6) (2022) 4209-4218. https://doi.org/10.1016/j.aej.2021.09.040

H. Karimi-Maleh, F. Tahernejad-Javazmi, V. K. Gupta, H. Ahmar, M. H. Asadi, A novel biosensor for liquid phase determination of glutathione and amoxicillin in biological and pharmaceutical samples using a ZnO/CNTs nanocomposite/catechol derivative modified electrode, Journal of Molecular Liquids 196(8) (2014) 258-263. https://doi.org/10.1016/j.molliq.2014.03.049

M. Tabrizi, S. A. Shahidi, F. Chekin, A. G. HasanSaraei, S. N. Raeisi, Reduce graphene oxide/Fe3O4 nanocomposite biosynthesized by sour lemon peel; using as electro-catalyst for fabrication of vanillin electrochemical sensor in food products analysis and anticancer activity, Topics in Catalysis 65(5) (2022) 726-732. https://doi.org/10.1007/s11244-021-01541-x

M. Fouladgar, H. Karimi-Maleh, Ionic liquid/multiwall carbon nanotubes paste electrode for square wave voltammetric determination of methyldopa, Ionics 19(8) (2013) 1163-1170. https://doi.org/10.1007/s11581-012-0832-7

H. Karimi-Maleh, A. L. Sanati, V. K. Gupta, M. Yoosefian, M. Asif, A. Bahari, A voltammetric biosensor based on ionic liquid/NiO nanoparticle modified carbon paste electrode for the determination of nicotinamide adenine dinucleotide (NADH), Sensors and Actuators B 204(12) (2014) 647-654. https://doi.org/10.1016/j.snb.2014.08.037

A.A. Ensafi, H. Karimi‐Maleh, Voltammetric determination of isoproterenol using multiwall carbon nanotubes‐ionic liquid paste electrode, Drug Testing and Analysis 3(5) (2011) 325-330. https://doi.org/10.1002/dta.232

M. Alizadeh, M. Nodehi, S. Salmanpour, F. Karimi, A. L. Sanati, S. Malekmohammadi, N. Zakarariae, R. Esmaeili, J. Hedayat, Properties and recent advantages of N, N’-dialkylimidazolium-ion liquids application in electrochemistry, Current Analytical Chemistry 18(1) (2022) 31-52. https://doi.org/10.2174/1573411016999201022141930

A. Hosseinian-Roudsari, S.A. Shahidi, A. Ghorbani-HasanSaraei, S. Hosseini, F. Fazeli, A new electroanalytical approach for sunset yellow monitoring in fruit juices based on a modified sensor amplified with nano-catalyst and ionic liquid, Food and Chemical Toxicology 168(10) (2022) 113362 https://doi.org/10.1016/j.fct.2022.113362

P. Ebrahimi, S.A. Shahidi, M. Bijad, A rapid voltammetric strategy for determination of ferulic acid using electrochemical nanostructure tool in food samples, Journal of Food Measurement and Characterization 14(6) (2020) 3389-3396. https://doi.org/10.1007/s11694-020-00585-z

A. A. Ensafi, H. Karimi‐Maleh, S. Mallakpour, Simultaneous determination of ascorbic acid, acetaminophen, and tryptophan by square wave voltammetry using N‐(3, 4‐Dihydroxyphenethyl)‐3, 5‐Dinitrobenzamide‐modified carbon nanotubes paste electrode, Electroanalysis 24(3) (2012) 666-675. https://doi.org/10.1002/elan.201100465

H. Karimi-Maleh, F. Tahernejad-Javazmi, M. Daryanavard, Electrocatalytic and simultaneous determination of ascorbic acid, nicotinamide adenine dinucleotide and folic acid at ruthenium(II) complex-ZnO/CNTs nanocomposite modified carbon paste electrode, Electroanalysis 26(5) (2014) 692-970. https://doi.org/10.1002/elan.201400013

J. B. Raoof, R. Ojani, H. Karimi-Maleh, M. R. Hajmohammadi, P. Biparva, Multi-wall carbon nanotubes as a sensor and ferrocene dicarboxylic acid as a mediator for voltammetric determination of glutathione in hemolysed erythrocyte, Analytical Methods 3(11) (2011) 2637-2643. https://doi.org/10.1039/C1AY05031A

R. Darabi, M. Shabani-Nooshabadi, Development of an amplified nanostructured electrochemical sensor for the detection of cefixime in pharmaceuticals and biological samples, Journal of Pharmaceutical and Biomedical Analysis 212(5) (2022) 114657. https://doi.org/10.1016/j.jpba.2022.114657

Downloads

Published

18-01-2023 — Updated on 18-01-2023

How to Cite

Chenarani, S., Ebrahimi, M., Arabali , V., & Beyramabadi , S. A. (2023). ZnO/1-hexyl-3-methylimidazolium chloride paste electrode, highly sensitive lorazepam sensor: Original scientific paper. Journal of Electrochemical Science and Engineering, 14(1), 83–92. https://doi.org/10.5599/jese.1577

Issue

Section

Electroanalytical chemistry