Annealing effect on structural and electrochemical performance of Ti-doped LiNi1/3Mn1/3Co1/3O2 cathode materials

Original scientific paper


  • Kelimah Elong Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia
  • Muhd Firdaus Kasim Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia and School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia
  • Nurhanna Badar Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus Terengganu, Malaysia
  • Norashikin Kamarudin Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia
  • Norlida Kamarulzaman Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia
  • Zurina Osman Physics Department, Universiti Malaya, 50603, Kuala Lumpur, Malaysia



Cathode material, Ti doping, combustion method, rietveld refinement, Li-ion battery, NMC 111
Graphical Abstract


NMC 111 cathode materials exhibit engaging properties in high energy density and low cost, making it great potential for the next generation of high-energy lithium-ion batteries. However, it still faces challenges such as fast capacity fade, especially at high C rates. Herein, we implement the novel Ti-doped cathode material, LiNi0.3Mn0.3Co0.3Ti0.1O2 (NMCT) synthesized via the combustion method. It was discovered that NMCT can effectively improve capacity delivery at high C rates. The T80 material demonstrated superior electrochemical annealed at 800 ˚C for 72 h, with an exceptional specific discharge capacity of 148.6 mAh g-1 and excellent cycle stability (capacity retention 96.8 %) after 30th cycles at 3 C. The results demonstrated that Ti-doped NMC had superior advantages for LiNi1/3Mn1/3Co1/3O2 (NMC 111) material at the optimum temperature of 800 °C for 72 h. It is one of the potential cathode materials for Li-ion batteries.


Download data is not yet available.


M. Greenwood, M. Wentker, J. Leker, A region-specific raw material and lithium-ion battery criticality methodology with an assessment of NMC cathode technology, Applied Energy 301 (2021) 117512.

J. Liu, J. Wang, Y. Ni, K. Zhang, F. Cheng, J Chen, Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries, Materials Today 43 (2021) 132-145.

S. Lee, T. Lee, High performance hybrid supercapacitors with LiNi1/3Mn1/3Co1/3O2/activated carbon cathode and activated carbon anode, International Journal of Hydrogen Energy 43 (2018) 15365-15369.

W. Ahn, S.N. Lim, K.N. Jung, S.H. Yeon, K.B. Kim, H.S. Song, K.H. Shin, Combustion-synthesized LiNi0.6Mn0.2Co0.2O2 as cathode material for lithium ion batteries, Journal of Alloys and Compounds 609 (2014) 143-149.

J. Ahn, E.K. Jang, S. Yoon, S. Lee, S. Sung, D. Kim, K. Y. Cho, Ultrathin ZrO on LiNi0.5Mn0.3Co0.2O2 electrode surface via atomic layer deposition for high-voltage operation in lithium-ion batteries Applied Surface Science 484 (2019) 701-709.

X. Yan, L. Zhang, J. Lu, Improve safety of high energy density LiNi1/3Mn1/3Co1/3O2/graphite battery using organosilicon electrolyte, Electrochimica Acta 296 (2019) 149-154.

P. Kaur, K. Singh, Review of perovskite-structure related cathode materials for solid oxide fuel cells, Ceramics International 46 (2020) 5521-5535.

Y. Xi, Y. Liu, D. Zhang, S. Jin, R. Zhang, M. Jin, Comparative study of the electrochemical performance of LiNi0.5Mn0.3Co0.2O2 and LiNi0.8Mn0.1Co0.1O2 cathode materials for lithium ion batteries, Solid State Ionics 327 (2018) 27-31.

L. Li, Q. Yao, Z. Chen, L. Song, T. Xie, H. Zhu, J. Duan, K. Zhang, Effects of lithium-active manganese trioxide coating on the structural and electrochemical characteristics of LiNi0.5Co0.2Mn0.3O2 as cathode materials for lithium ion battery, Journal of Alloys and Compounds 650 (2015) 684-691.

E. Shinova, R. Stoyanova, E. Zhecheva, G.F. Ortiz, P. Lavela, J.L. Tirado, Cationic distribution and electrochemical performance of on LiNi1/3Mn1/3Co1/3O2 electrodes for lithium-ion batteries, Solid State Ionics 179 (2008) 2198-2208.

T. Li, X. Li, Z. Wang, H. Guo, W. Peng, K. Zeng, Electrochemical properties of LiNi0.6Co0.2Mn0.2O2 as cathode material for Li-ion batteries prepared by ultrasonic spray pyrolysis, Materials Letters 159 (2015) 39-42.

J. Zeng, C. Hai, X. Ren, X. Li, Y. Shen, O. Dong, L. Zhang, Y. Sun, L. Ma, X. Zhang, S. Dong, Y. Zhou, Facile triethanolamine-assisted combustion synthesized layered LiNi1/3Mn1/3Co1/3O2 cathode materials with enhanced electrochemical performance for lithium-ion batteries, Journal of Alloys and Compounds 735 (2018) 1977-1985.

N. Zhao, J. Chen, Z. Liu, K. Ban, W. Duan, Porous LiNi1/3Mn1/3Co1/3O2 microsheets assembled with single crystal nanoparticles as cathode materials for lithium ion batteries, Journal of Alloys and Compounds 768 (2018) 782-88.

D. Ren, Y. Yang, L. Shen, R. Zeng, H.D. Abrunan, Ni-rich LiNi0.88Mn0.06Co0.06O2 cathode interwoven by carbon fiber with improved rate capability and stability, Journal of Power Sources 447 (2020) 227344.

M. Li, J. Lu, Z. Chen, K. Amine, 30 Years of Lithium-Ion Batteries, Advanced Materials 30 (2018) 1800561.

V. Paulraj, K. Vediappan, K.K. Bharathi, Phase-surface enabled electrochemical properties and room temperature work function of LiNi1/3Mn1/3Co1/3O2 cathode thin films, Chemical Physics Letters 761 (2020) 138074.

M. Eilers-Rethwisch, M. Winter, F.M. Schappacher, Synthesis, electrochemical investigation and structural analysis of doped Li[Ni0.6 Mn0.2Co0.2-xMx]O2 (x = 0, 0.05; M= Al, Fe, Sn) cathode materials, Journal of Power Sources 387 (2018) 101-107.

Z. Zhang, J. Qiu, M. Yu, C. Jin, B. Yang, G. Guo, Performance of Al-doped LiNi1/3Mn1/3Co1/3O2 synthesized from spent lithium ion batteries by sol-gel method, Vacuum 172 (2020) 109105.

P. B. Samarasingha, A. Wijayasinghe, M. Behm, L. Dissanayake, G. Lindbergh, Developments of cathode materials for lithium ion rechargeable batteries on the system Li[Ni1/3 Mn1/3Co1/3-xMx]O2, (M =Mg, Fe, l and x = 0.00 to 0.33), Solid State Ionics 268 (2014) 226-230.

S. Wang, Y. Li, J. Wu, B. Zheng, M.J. McDonald, Y. Yang, Toward a stabilized lattice framework and surface structure of layered lithium-rich cathode materials with Ti modification, Physical Chemistry Chemical Physics 17 (2015) 10151.

D. Zhang, Y. Liu, L. Wu, L. Feng, S. Jin, R. Zhang, M. Jin, Effect of Ti ion doping on electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material, Electrochimica Acta 328 (2019) 135086.

X. Yang, C. Bao, L. Xie, L. Zhu, X. Cao, Preparation of LiNi1/3Mn1/3Co1/3O2 polytriphenylamine cathode composites with enhanced electrochemical performances towards reversible lithium storage, Ceramics International 45 (2019) 9726-9735.

Y. Fang, Y. Huang, W. Tong, Y. Cai, X. Wang, Y. Guo, D. Jia, J. Zong, Synthesis of hollow peanut-like hierarchical mesoporous LiNi1/3Mn1/3Co1/3O2 cathode materials with exceptional cycle performance for lithium-ion batteries by a simple self-template solid state method, Journal of Alloys and Compounds 743 (2018) 707-715.

Q. Su, Y. Li, L. Li, W. Li, G. Cao, L. Xue, J. Li, X. Cao, Synthesis and electrochemical properties of LiNi1/3Mn1/3Co1/3O2 via an original wet-chemical route for high voltage Li-ion batteries, Materials Letters 198 (2017) 180-183.

Q. Jing, J. Zhang, C. Yang, Y. Chen, A novel and practical hydrothermal method for synthesizing LiNi1/3Mn1/3Co1/3O2 cathode material, Ceramics International 46 (2020) 20020-20026.

W. Cho, J. H. So, K. Lee, M. Lee, H. Kim, J. Yu, Y. Kim, K. J. Kim, Improved particle hardness of Ti-doped LiNi1/3Mn1/3Co1/3-xTix O2 as high-voltage cathode material for lithium-ion batteries, Journal of Physics and Chemistry of Solids 123 (2018) 271-278.

Y. Zhang, Z. B. Wang, J. Lei, F.F. Li, J. Wu, X.G. Zhang, F.D. Yu, K. Ke, Investigation on performance of Li(Ni0.5Co0.2Mn0.3)1-xTixO2 cathode materials for lithium-ion battery, Ceramics International 41 (2015) 9069-9077).

S. Refly, O. Floweri, T.R. Mayangsari, A.H. Aimon, F. Iskandar, Green recycle processing of cathode active material from LiNi1/3Mn1/3Co1/3O2 (NMC 111) battery waste through citric acid leaching and oxalate co-precipitation process, Materials Today: Proceedings 44 (2021) 3378-3380.

R. Tian, J. Su, Z. Ma, D. Song, X. Shi, H. Zhang, C. Li, L. Zhang, Influences of surface Al concentration on the structure and electrochemical performance of core-shell LiNi0.8Co0.15Al0.05O2 cathode material, Electrochimica Acta 337 (2020) 135769.

C. Li, Q. Hou, S. Li, F. Tang, P. Wang, Synthesis and properties of nanostructures LiNi1/3Mn1/3Co1/3O2 as cathode with lithium bis(oxalate)borate-based electrolyte to improve cycle performance in Li-ion battery, Journal of Alloys and Compounds 723 (2017) 887-893.

B. Ramkumar, S. Yuvaraj, S. Surendran, K. Pandi, H.V. Ramasamy, Y.S. Lee, R.K. Selvan, Synthesis and characterization of carbon coated LiNi1/3Mn1/3Co1/3O2 and bio-mass derived graphene like porous carbon electrodes for aqueous Li-ion hybrid supercapacitor, Journal of Physics and Chemistry of Solids 112 (2018) 270-279.

A. Iqbal, D. Li, Systematic study of the effect of calcination temperature and Li/M molar ratio on high performance Ni-rich layered LiNi0.9Co0.1O2 cathode materials, Chemical Physics Letters 720 (2019) 97-106.

J. Liu, W. Qiu, L. Yu, H. Zhao, T. Li, Synthesis and electrochemical characterization of layered LiNi1/3Mn1/3Co1/3O2 cathode materials by low-temperature solid-state reaction, Journal of Alloys and Compounds 449 (2008) 326-330.

C. Lu, S. Yang, H. Wu, Y. Zhang, X. Yang, T. Liang, Enhanced electrochemical performance of Li-rich Li1.2Mn0.52Co0.08Ni0.2O2 cathode materials for Li-ion batteries by vanadium doping, Elecrochimica Acta 209 (2016) 448-445.

M.F. Kasim, W.A.H.W. Azizan, K. Elong, N. Kamarudin, M.K. Yaakob, N. Badar, Enhancing the structural stability and capacity retention of Ni-rich LiNi0.7Co0.3O2 cathode materials via Ti doping for rechargeable Li-ion batteries: Experimental and computational approaches, Journal of Alloys and Compounds 888 (2021) 161559.

W.A.H.W. Azizan, M.F. Kasim, K. Elong, R. Rusdi, R.M. Rosnan, N. Kamarulzaman, Effects of Al-dopant at Ni or Co sites in LiNi0.6Co0.3Ti0.1O2 on interlayers slabs (Li-O) and intralayer slabs (TM-O) and their influence on the electrochemical performance of cathode materials, RSC Advances 10 (2020) 40291.

X. Chen, Y. Tang, C. Fan, S. Han, A high stabilized single crystalline nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode through a novel surface spinel-phase modification, Electrochimica Acta 341 (2020) 136075.

J. Zheng, W. Zhou, Y. Ma, H. Jin, L. Guo, Combustion synthesis of LiNi1/3Mn1/3Co1/3O2 powder with enhanced electrochemical performance in LIBs, Journal of Alloys and Compounds 635 (2015) 207-212.

S. Mou, K. Huang, M. Guan, X. Ma, J. S. Chen, Y. Xiang, X. Zhang, Reduced energy barrier for Li+ diffusion in LiCoO2 via dual doping of Ba and Ga, Journal of Power Sources 505 (2021) 230067.

G. Li, Z. Huang, Z. Zuo, Z. Zhang, H. Zhou, Understanding the trace Ti surface doping on promoting the low temperature performance of LiNi1/3Mn1/3Co1/3O2 cathode, Journal of Power Sources 281 (2015) 69-76.

Y. Jiang, Y. Bi, M. Liu, Z. Peng, L. Huai, P. Dong, J. Duan, Z. Chen, X. Li, D. Wang, Y. Zhang, Improved stability of Ni-rich cathode by the substitutive cations with stronger bonds, Electrochimica Acta 268 (2018) 41-48.

Y. Wei, J. Zheng, S. Cui, X. Song, Y. Su, W. Deng, Z. Wu, X. Wang, W. Wang, M. Rao, Y. Lin, C. Wang, K. Amine, F. Pan, Kinetic Tuning of Li-ion Diffusion in Layered Li(NixMnyCoz)O2 Journal of the American Chemical Society 137 (26) (2015) 8364-8367.


13-02-2023 — Updated on 13-02-2023

How to Cite

Elong , K., Kasim, M. F., Badar, N., Kamarudin , N., Kamarulzaman, N., & Osman, Z. (2023). Annealing effect on structural and electrochemical performance of Ti-doped LiNi1/3Mn1/3Co1/3O2 cathode materials: Original scientific paper. Journal of Electrochemical Science and Engineering, 13(4), 673–686.



Batteries and supercapcitors