Predicting the effect of silicon electrode design parameters on thermal performance of a lithium-ion battery

Original scientific paper

Authors

DOI:

https://doi.org/10.5599/jese.1558

Keywords:

Particle size, NMC, heat generation, separator
Graphical Abstract

Abstract

The present study models the role of electrode structural characteristics on the thermal beha­viour of lithium-ion batteries. Preliminary modelling runs have employed a 1D lithium-ion battery, coupled to a two-dimensional axisymmetric model using silicon as the battery anode material. The two models are coupled by the heat generated and the average temperature. Our study is focused on the silicon anode particle sizes, and it is observed that silicon anodes with nano sized particles reduced the heating of the battery under charge/discharge cycles when compared to anodes with larger particles. These results are discussed in context of the relationship between particle size and thermal transport properties in the electrode.

Downloads

Download data is not yet available.

References

C. Liu, L. Liu, Optimal Design of Li-Ion Batteries through Multi-Physics Modeling and Multi-Objective Optimization, Journal of The Electrochemical Society 164(11) (2017) E3254-E3264. https://doi.org/10.1149/2.0291711jes

M. J. Lain, J. Brandon, E. Kendrick, Design Strategies for High Power vs. High Energy Lithium Ion Cells, Batteries 5(4) (2019) 64. https://doi.org/10.3390/batteries5040064

M. Ge, X. Fang, J. Rong, V. Zhou, Review of porous silicon preparation and its application for lithium-ion battery anodes, Nanotechnology 24(42) (2013) 422001. https://doi.org/10.1088/0957-4484/24/42/422001

M. Salah, P. Murphy, C. Hall, C. Francis, R. Kerr, M. Fabretto, Pure silicon thin-film anodes for lithium-ion batteries, Journal of Power Sources 414 (2019) 48-67. https://doi.org/10.1016/j.jpowsour.2018.12.068

H. Dasari, E. Eisenbraun. Predicting Capacity Fade in Silicon Anode-Based Li-Ion Batteries, Energies 14 (2021) 1448. https://doi.org/10.3390/en14051448

P. U. Nzereogu, A. D .Omah, F. I. Ezema, E. I. Iwuoha, A. C. Nwanya, Anode materials for lithium-ion batteries, Applied Surface Science Advances 9 (2022) 100233. https://doi.org/10.1016/j.apsadv.2022.100233

X. Song, X. Wang, Z. Sun , P. Zhang , L. Gao, Recent developments in silicon anode materials for high performance lithium-ion batteries. Material Matters 8 (2016). https://www.sigmaaldrich.com/US/en/technical-documents/technical-article/materials-science-and-engineering/batteries-supercapacitors-and-fuel-cells/recent-developments-in-silicon-anode-materials.

W. Mei, H. Chen, J. Sun, Q. Wang, The effect of electrode design parameters on battery performance and optimization of electrode thickness based on the electrochemical-thermal coupling model, Sustainable Energy & Fuels 3 (2019) 148-165. https://doi.org/10.1039/C8SE00503F

K. Kisu, S. Aoyagi, H. Nagatomo, E. Iwama, M. T. H. Reid, W. Naoi and K. Naoi, Internal resistance mapping preparation to optimize electrode thickness and density using symmetric cell for high-performance lithium-ion batteries and capacitors, Journal of Power Sources 396 (2018) 207-212. https://doi.org/10.1016/j.jpowsour.2018.05.083

Y. H. Chen, C. W. Wang, X. Zhang, A. M. Sastry, Porous cathode optimization for lithium cells: ionic and electronic conductivity, capacity, and selection of materials, Journal of Power Sources 195(9) (2010) 2851-2862. https://doi.org/10.1016/j.jpowsour.2009.11.044.

H. Zheng, R. Yang, G. Liu, X. Song, V. S. Battaglia, Cooperation between Active Material, Polymeric Binder and Conductive Carbon Additive in Lithium-Ion Battery Cathode, The Journal of Physical Chemistry C 116(7) (2012) 4875-4882. https://doi.org/10.1021/jp208428w

J. W. Fergus, Recent developments in cathode materials for lithium-ion batteries Journal of Power Sources 195(4) (2010) 939-954. https://doi.org/10.1016/j.jpowsour.2009.08.089.

C. H. Lu, S. W. Lin, Influence of the particle size on the electrochemical properties of lithium manganese oxide, Journal of Power Sources 97-98 (2001) 458-460. https://doi.org/10.1016/S0378-7753(01)00637-1.

L. Xiao, Y. Guo, D. Qu, B. Deng, H. Liu, D. Tang, Influence of particle sizes and morphologies on the electrochemical performances of spinel LiMn2O4 cathode materials, Journal of Power Sources 225 (2013) 286-292. https://doi.org/10.1016/j.jpowsour.2012.10.070

R. Zhao, J. Liu, J. Gu, The effects of electrode thickness on the electrochemical and thermal characteristics of lithium-ion battery, Applied Energy 139 (2015) 220-229. https://doi.org/10.1016/j.apenergy.2014.11.051

H. Zheng, J. Li, X. Song, G. Liu, V. S. Battaglia, A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes, Electrochimica Acta 71 (2012) 258-265. https://doi.org/10.1016/j.electacta.2012.03.161

J. Newman, Optimization of Porosity And Thickness of a Battery Electrode by Means of a Reaction-Zone Model, Journal of The Electrochemical Society 142(1) (1995) 97-101. https://doi.org/10.1149/1.2043956

V. Jha, B. Krishnamurthy, Modelling the effect of anode particle radius and anode reaction rate constant on capacity fading of Li-ion batteries, Journal of Electrochemical Science and Engineering 12(2) (2022) 359-372. https://doi.org/10.5599/jese.1147 .

J. C. Barbosa, J. P Dias, S. Lanceros-Méndez, C. M. Costa, Recent Advances in Poly (vinylidene fluoride) and Its Copolymers for Lithium-Ion Battery Separators, Membranes 8 (2018) 45. https://doi.org/10.3390/membranes8030045

W. Wu, X. Xiao, X. Huang, The effect of battery design parameters on heat generation and utilization in a Li-ion cell, Electrochimica Acta 83 (2012) 227-240. https://doi.org/10.1016/j.electacta.2012.07.081

J. Kang, Y. Jia, G. Zhu, J. V. Wang, B. Huang, Y. Fan, How electrode thicknesses influence performance of cylindrical lithium-ion batteries, Journal of Energy Storage 46 (2022) 103827. https://doi.org/10.1016/j.est.2021.103827

J. I. Madsen, W. Shyy, R. T. Haftka, Response Surface Techniques for Diffuser Shape Optimization, AIAA Journal 38(9) (2000) 1512-1518. https://doi.org/10.2514/2.1160

A. H. N Shirazi, M. R. Azadi Kakavand, T. Rabczuk, Numerical Study of Composite Electrode's Particle Size Effect on the Electrochemical and Heat Generation of a Li-Ion Battery, Journal of Nanotechnology in Engineering and Medicine 6(4) (2015) 041003. https://doi.org/10.1115/1.4032012

Y. Jin, B. Zhu,Z. Lu, N. Liu, J. Zhu, Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery, Advanced Energy Materials 7 (2017) 1700715. https://doi.org/10.1002/aenm.201700715

COMSOL Multiphysics® v. 5.6., COMSOL AB, Stockholm, Sweden. www.comsol.com

R. Endo, Y. Fujihara, M. Susa, Calculation of density and heat capacity of silicon by molecular dynamics simulation, High Temperatures-High Pressures 35/36(5) (2003) 505-511. http://www.thermophysics.ru/pdf_doc/AutoPlay/Docs/CollectionOfManuscripts/ECTP2005paper139.pdf

V. M. Glazov, A. S. Pashinkin, The thermophysical properties (heat capacity and thermal expansion) of single-crystal silicon, High Temperature 39(3) (2001) 413-419. https://doi.org/10.1023/A:1017562709942

S. M. Sze, K. Kwok Ng, Physics of Semiconductor Devices, John Wiley & Sons, Inc. 3 (2006) 790. https://doi.org/10.1002/9780470068328.app7

E. Hosseinzadeh, J. Marco, P. Jennings, The impact of multi-layered porosity distribution on the performance of a lithium-ion battery, Applied Mathematical Modelling 61 (2018) 107-123. https://doi.org/10.1016/j.apm.2018.04.001

Downloads

Published

20-02-2023 — Updated on 20-02-2023

How to Cite

Dasari, H., & Eisenbraun, E. (2023). Predicting the effect of silicon electrode design parameters on thermal performance of a lithium-ion battery: Original scientific paper. Journal of Electrochemical Science and Engineering, 13(4), 659–672. https://doi.org/10.5599/jese.1558

Issue

Section

Batteries and supercapcitors