Wolffia globosa as a biocatalyst in plant-based biofuel cells

Original scientific paper


  • Yolina Hubenova Institute of Electrochemistry and Energy Systems “Acad. E. Budevski” – Bulgarian Academy of Sciences https://orcid.org/0000-0003-1783-758X
  • Eleonora Hubenova Department of Biochemistry and Microbiology, Plovdiv University “Paisii Hilendarski”, 24 Tsar Asen Str., Plovdiv, Bulgaria https://orcid.org/0000-0002-6297-7437
  • Mario Mitov Innovative Center for Eco Energy Technologies, South-West University “Neofit Rilski”, Blagoevgrad, Bulgaria https://orcid.org/0000-0002-1123-0149




Duckweed, polarization, metabolic activity, electricity generation
Graphical Abstract


The rootless duckweed Wolffia globosa, not explored toward electrogenicity till now, is investigated as a putative biocatalyst in plant-based biofuel cells (P-BFC) for the electrical current generation and its basic metabolic changes during the polarization are depicted. After a short adaptation period, the open-circuit voltage of P-BFC, utilizing W. globosa as an anodic biocatalyst, reaches values of 630 mV. At a connected external resistor of 1 kΩ in the electric circuit, stable current densities of 170±10 mA m-2 are achieved. The electrical outputs depend on the anodic potential, reaching negative values of ca. -200 mV (vs. SHE). W. globosa produces an electrochemically active compound, acting as an electron shuttle. The polarization intensifies the W. globosa metabolism, expressed in a double increased glucose and starch content along with 1.82 times higher specific amylase activity of 70.0±2.8 U g-1 wet biomass in the organelle-enriched fractions of the explored as biocatalysts plants compared to the control. The results reveal that Wolffia globosa can be utilized as a biocatalyst in P-BFC for simultaneous electricity generation and increased carbohydrate and protein content.


Download data is not yet available.


D. P. B. T. B. Strik, H. V. M. Hamelers, J. F. H. Snel, C. J. N. Buisman, Green electricity production with living plants and bacteria in a fuel cell, International Journal of Energy Research 32 (2008) 870-876. https://doi.org/10.1002/er.1397

R. A. Timmers, M. Rothballer, D. P. B. T. B. Strik, M. Engel, S. Schulz, M. Schloter, A. Hartmann, B. Hamelers, C. Buisman, Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell, Applied Microbiology and Biotechnology 94 (2012) 537-548. https://doi.org/10.1007/s00253-012-3894-6

R. A. Timmers, D. P. B. T. B. Strik, H. V. M. Hamelers, C. J. N. Buisman, Long-term performance of a plant microbial fuel cell with Spartina anglica, Applied Microbiology and Biotechnology 86 (2010) 973-981. https://doi.org/10.1007/s00253-010-2440-7

M. Helder, D. P. B. T. B. Strik, H. V. M. Hamelers, A. J. Kuhn, C. Blok, C. J. N. Buisman, Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax, Bioresource Technology 101 (2010) 3541-3547. https://doi.org/10.1016/j.biortech.2009.12.124

Y. Hubenova, M. Mitov, Conversion of solar energy into electricity by using duckweed in Direct Photosynthetic Plant Fuel Cell, Bioelectrochemistry 87 (2012) 185-191. https://doi.org/10.1016/j.bioelechem.2012.02.008

Y. Hubenova, M. Mitov, Enhanced metabolic and redox activity of vascular aquatic plant Lemna valdiviana under polarization in Direct Photosynthetic Plant Fuel Cell, Bioelectrochemistry 106A (2015) 226-231. https://doi.org/10.1016/j.bioelechem.2014.07.007

S. Liu, H. Song, X. Li, F. Yang, Power Generation Enhancement by Utilizing Plant Photosynthate in Microbial Fuel Cell Coupled Constructed Wetland System, International Journal of Photoenergy 2013 (2013) 172010. https://doi.org/10.1155/2013/172010

P. Bombelli, D. M. R. Iyer, S. Covshoff, A. J. McCormick, K. Yunus, J. M. Hibberd, A. C. Fisher, C. J. Howe, Comparison of power output by rice (Oryza sativa) and an associated weed (Echinochloa glabrescens) in vascular plant bio-photovoltaic (VP-BPV) systems, Applied Microbiology and Biotechnology 97 (2013) 429-438. https://doi.org/10.1007/s00253-012-4473-6

Y. Hubenova, G. Ivanov, E. Hubenova, M. Mitov, Photo-induced charge transfer between Lemna minor and anode of photosynthesizing plant fuel cell, Bulgarian Chemical Communications 50B (2018) 141-146. http://www.bcc.bas.bg/BCC_Volumes/Volume_50_Special_B_2018/BCC-50-SI-B-2018-Hubenova-141-146.pdf

M. Kozłowska, M. Rybus-Zając, J. Stachowiak, B. Janowska, Changes in carbohydrate contents of Zantedeschia leaves under gibberellin-stimulated flowering, Acta Physiologiae Plantarum 29 (2007) 27-32. https://doi.org/10.1007/s11738-006-0004-3

J. V. Halick, K. K. Keneaster,The use of a starch-iodine-blue test as a quality indicator of white milled rice, Cereal Chemistry 33 (1956) 315-319.

P. Bernfeld, Amylases, α and β, Methods in Enzymology 1 (1955) 149-158. https://doi.org/10.1016/0076-6879(55)01021-5

Z. He, C. W. Honeycutt. A modified molybdenum blue method for orthophosphate determination suitable for investigating enzymatic hydrolysis of organic phosphates, Communications in Soil Science and Plant Analysis 36 (2005) 1373-1383. https://doi.org/10.1081/CSS-200056954

A. J. Engelen, F. C. van der Heeft, P. H. Randsdorp, E. L. Smit, Simple and rapid determination of phytase activity, Journal of AOAC International 77 (1994) 760-764. https://doi.org/10.1093/jaoac/77.3.760

Y. Hubenova, D. Georgiev, M. Mitov, Enhanced phytate dephosphorylation by using Candida melibiosica yeast-based biofuel cell, Biotechnology Letters 36 (2014) 1993-1997. https://doi.org/10.1007/s10529-014-1571-9

Y. Hubenova, M. Mitov, Extracellular electron transfer in yeast-based biofuel cells, Bioelectro¬chemistry 106A (2015) 177-185. https://doi.org/10.1016/j.bioelechem.2015.04.001

Y. Hubenova, M. Todorova, R. Bakalska, M. Mitov, Photophysical and electrochemical properties of newly synthesized stilbazolium dyes, ChemElectroChem 9 (2022) e202200918. https://doi.org/10.1002/celc.202200918

S. Sevda, P. J. Sarma, K. Mohanty, T. R. Sreekrishnan, D. Pant, Microbial Fuel Cell Technology for Bioelectricity Generation from Wastewaters, In Waste to Wealth, R. Singhania, R. Agarwal, R. Kumar, R. Sukumaran (Eds), Springer, Singapore, 2018, p. 237 https://doi.org/10.1007/978-981-10-7431-8_11

L. S. Pierson III, E. A. Pierson. Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes, Applied Microbiology and Biotechnology 86 (2010) 1659-1670. https://doi.org/10.1007/s00253-010-2509-3

R. Nakagawa, Y. Nishina. Simulating the redox potentials of unexplored phenazine derivatives as electron mediators for biofuel cells, Journal of Physics: Energy 3 (2021) 034008. https://doi.org/10.1088/2515-7655/abebc8

L. Yang, H. Han, M. Liu, Z. Zuo, K. Zhou, J. Lü, Y. Zhu, Y. Bai, Y. Wang. Overexpression of the Arabidopsis photorespiratory pathway gene, serine: glyoxylate aminotransferase (AtAGT1), leads to salt stress tolerance in transgenic duckweed (Lemna minor), Plant Cell, Tissue and Organ Culture 113 (2013) 407-416. https://doi.org/10.1007/s11240-012-0280-0

Y. Hubenova, E. Hubenova, E. Slavcheva, M. Mitov, The glyoxylate pathway contributes to enhanced extracellular electron transfer in yeast-based biofuel cell, Bioelectrochemistry 116 (2017) 10-16. https://doi.org/10.1016/j.bioelechem.2017.03.003

Y. Hubenova, D. Georgiev, M. Mitov, Stable current outputs and phytate degradation by yeast-based biofuel cell, Yeast 31 (2014) 343-348. https://doi.org/10.1002/yea.3027

G. Y. Baek, M. Saeed, H.‑K. Choi, Duckweeds: their utilization, metabolites and cultivation, Applied Biological Chemistry 64 (2021) 73. https://doi.org/10.1186/s13765-021-00644-z


31-01-2023 — Updated on 31-01-2023

How to Cite

Hubenova, Y., Hubenova, E., & Mitov, M. (2023). Wolffia globosa as a biocatalyst in plant-based biofuel cells: Original scientific paper. Journal of Electrochemical Science and Engineering, 13(5), 795–804. https://doi.org/10.5599/jese.1547



8th RSE SEE & 9th Kurt Schwabe symposium Special Issue

Funding data