A general introduction to lithium-ion batteries: From the first concept to the top six commercials and beyond

Review paper


  • Phuoc-Anh Le Institute of Sustainability Science, Vietnam-Japan University, Vietnam National University-Hanoi, Hanoi, Vietnam and Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-0018, Japan https://orcid.org/0000-0003-4549-4166




Energy storage, secondary batteries, cathode, anode, electrochemistry
Graphical Abstract


The birth of lithium-ion batteries (LIBs) is not a breakthrough scientific discovery overnight but a successor and continuous development of scientists for a long time based on the previous generation of electrochemical batteries. The development of LIBs and succeeding generations of batteries, however, is highly hopeful given the broad commercialization of LIBs during the previous ten years. Intensified research is required to create next-generation LIBs with drastically better performance, including enhanced energy density, charging rate, lifespan, stability, and safety, in order to fulfill the rising demand for energy storage. Research into LIBs and next-generation is currently in an explosive phase with the goal of overcoming the significant challenge posed by conventional LIBs that can keep up with the rapidly evolving needs of the electronics, mechanical, and automation industries, particularly electric vehicles. In this case, this tutorial review might offer a broad overview of LIBs as well as an optimistic look toward the upcoming generation.



Download data is not yet available.


D. Deng, Energy Science and Engineering 3(5) (2015) 385-418. https://doi.org/10.1002/ese3.95

A. Manthiram, ACS Central Science 3 (2017) 1063–1069. https://doi.org/10.1021/acscentsci.7b00288

R. Zhang, B. Xia, B. Li, L. Cao, Y. Lai, W. Zheng, H. Wang, W. Wang, Energies 11 (2018) 1820. https://doi.org/10.3390/en11071820

D. Castelvecchi, ELECTRIC CARS: THE BATTERY CHALLENGE, Nature 596 (2021) 336-339. https://doi.org/10.1038/d41586-021-02222-1

W. Chen, J. Liang, Z. Yang, G. Li, Energy Procedia 158 (2019) 4363-4368. https://doi.org/10.1016/j.egypro.2019.01.783

M. Hu, Y. Wang, D. Ye, E3S Web of Conferences 308 (2021) 01015. https://doi.org/10.1051/e3sconf/202130801015

J. Baars, T. Domenech, R. Bleischwitz, H. E. Melin, O. Heidrich, Nature Sustainability 4 (2021) 71-79. https://doi.org/10.1038/s41893-020-00607-0A

Y. Tian, G. Zeng, A. Rutt, T. Shi, H. Kim, J. Wang, J. Koettgen, Y. Sun, B. Ouyang, T. Chen, Z. Lun, Z. Rong, K. Persson, G. Ceder, Chemical Reviews 121(3) (2021) 1623-1669. https://doi.org/10.1021/acs.chemrev.0c00767

J. Duan, X. Tang, H. Dai, Y. Yang, W. Wu, X. Wei Y. Huang, Electrochemical Energy Reviews 3 (2020) 1-42. https://doi.org/10.1007/s41918-019-00060-4

B. Ashok, C. Kannan, B. Mason, S. D. Ashok, V. Indragandhi, D. Patel, A. S. Wagh, A. Jain, C. Kavitha, Energies 15 (2022) 4227. https://doi.org/10.3390/en15124227

B. B. Owens, P. Reale, B. Scrosati, Encyclopedia of Electrochemical Power Sources (2009) 22-27. https://doi.org/10.1016/B978-044452745-5.00096-4

K. Kordesch, W. T. Mautner, Encyclopedia of Electrochemical Power Sources (2009) 555-564. https://doi.org/10.1016/B978-044452745-5.00003-4

D. Chao, W. Zhou, F. Xie, C. Ye, H. Li, M. Jaroniec, S. Z. Qiao, Science Advance 6 (2020) eaba4098. https://doi.org/10.1126/sciadv.aba4098

P. Ruetschi, F. Meli, J Desilvestro, Journal of Power Sources 57 (1995) 85-91. https://doi.org/10.1016/0378-7753(95)02248-1

S. Chang, K. H. Young, J. Nei, C. Fierro, Batteries 2(2) (2016) 10. https://doi.org/10.3390/batteries2020010

K. H. Young, Batteries 4 (2018) 9. https://doi.org/10.3390/batteries4010009

K. Amine, R. Kanno, Y. Tzeng, MRS Bulletin 39(5) (2014) 395-401. https://doi.org/10.1557/mrs.2014.62

G. E. Blomgren, Journal of The Electrochemical Society 164 (2017) A5019. https://doi.org/10.1149/2.0251701jes

M. Winter, B. Barnett, K. Xu, Chemical Reviews 118(23) (2018) 11433-11456. https://doi.org/10.1021/acs.chemrev.8b00422

T. Kim, W. Song, D. Y. Son, L. K. Ono, Y. Qi, Journal of Materials Chemistry A 7 (2019) 2942-2964. https://doi.org/10.1039/C8TA10513H

J. Xie, Y. C. Lu, Nature Communication 11 (2020) 2499. https://doi.org/10.1038/s41467-020-16259-9

S. Choi, G. Wang, Advance Materials Technologies 3 (2018) 1700376. https://doi.org/10.1002/admt.201700376

Y. Liang, C. Z. Zhao, H. Yuan, Y. Chen, W. Zhang, J. Q. Huang, D. Yu, Y. Liu, M. M. Titirici, Y. L. Chueh, H. Yu, Q. Zhang, InfoMat 1 (2019)6-32. https://doi.org/10.1002/inf2.12000

A. Ahmadian, A. Shafiee, M. Alidoost, A. Akbari, World Journal of Engineering and Technology 9 (2021) 285-299. https://doi.org/10.4236/wjet.2021.92020

D. Stampatori, P. P. Raimondi, M. Noussan, Energies 13 (2020) 2638. https://doi.org/10.3390/en13102638

X. Hu, X. Deng, F. Wang, Z. Deng, X. Lin, R. Teodorescu, Proceedings of the IEEE, 110(6) (2022) 735-753. https://doi.org/10.1109/JPROC.2022.3175614

A. Eftekhari, ACS Sustainable Chemistry & Engineering 7 (2019) 5602-5613. https://doi.org/10.1021/acssuschemeng.8b01494

C. P. Grey, D. S. Hall, Nature Communication 11 (2020) 6279. https://doi.org/10.1038/s41467-020-19991-4

A. Masias, J. Marcicki, W. A. Paxton, ACS Energy Letter 6(2) (2021) 621-630. https://doi.org/10.1021/acsenergylett.0c02584

N. Daniel, S. Stoyanov, C. Bailey, D. Flynn, 2021 44th International Spring Seminar on Electronics Technology (ISSE), Bautzen, Germany, (2021) 1-8. https://doi.org/10.1109/ISSE51996.2021.9467644

S. Arya, S. Verma, Rechargeable Batteries: History, Progress, and Applications, Wiley, Chapter 8 - Nickel-Metal Hydride (Ni-MH) Batteries, (2020) 131-175. https://doi.org/10.1002/9781119714774.ch8

C. Jeyaseelan, A. Jain, P. Khurana, D. Kumar, S. Thata, Rechargeable Batteries: History, Progress, and Applications, Wiley, Chapter 9 - Ni-Cd Batteries, (2020) 177-194. https://doi.org/10.1002/9781119714774.ch9

A. V. Ven, Z. Deng, S. Banerjee, S. P. Ong, Chemical Reviews 120(14) (2020) 6977-7019. https://doi.org/10.1021/acs.chemrev.9b00601

S. G. Abens, T. X. Mahy, W. C. Merz, NASA CR-54859 First quarterly report (1965).

M. S. Whittingham, Belgian Patent No. 819,672 (1973). https://patents.google.com/patent/US4233377

M. S. Whittingham, Science 192 (1976) 1126-1127. https://doi.org/10.1126/science.192.4244.1126

K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Materials Research Bulletin 15(6) (1980) 783-789. https://doi.org/10.1016/0025-5408(80)90012-4

R. Yazami, Ph. Touzain, Journal of Power Sources 9(3) (1983) 365-371. https://doi.org/10.1016/0378-7753(83)87040-2

A. Manthiram, Nature Communication 11 (2020) 1550.


Z. Chen, W. Zhang, Z. Yang, Nanotechnology 31 (2020) 012001. https://doi.org/10.1088/1361-6528/ab4447

X. Shen, X. Q. Zhang, F. Ding, J. Q. Huang, R. Xu, X. Chen, C. Yan, F. Y. Su, C. M. Chen, X. Liu, Q. Zhang, Energy Material Advanc 2021 (2020) 1205324. https://doi.org/10.34133/2021/1205324

M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N. R. Levy, P. Minnmann, L. Stolz, T. Waldmann, M. W. Mehrens, D. Aurbach, M. Winter, Y. E. Eli, J. Janek, Advanced Energy Materials 11 (2021) 2101126. https://doi.org/10.1002/aenm.202101126

S. Mahmud, M. Rahman, Md. Kamruzzaman, Md. O. Ali, Md. S. A. Emon, H. Khatun, M. R. Ali, Results in Engineering 15 (2022) 100472. https://doi.org/10.1016/j.rineng.2022.100472

P. P. Lopes, V. R. Stamenkovic, Science 369 (2020) 923-924. https://doi.org/10.1126/science.abd3352

A. Townsend, R. Gouws, Energies 15 (2022) 4930. https://doi.org/10.3390/en15134930

B. Viswanathan, Batteries, in Energy Sources, Fundamentals of Chemical Conversion Processes and Applications, B. Viswanathan, Ed., Elsevier, Amsterdam, Netherlands (2017) 263-313. https://doi.org/10.1016/B978-0-444-56353-8.00012-5

M. Okoshi, Y. Yamada, S. Komaba, A. Yamada, H. Nakai, Journal of The Electrochemical Society 164 (2017) A54. https://doi.org/10.1149/2.0211702jes

Q. Abbas, M. Mirzaeian, M. R. C. Hunt, P. Hall, R. Raza, Energies 13(21) (2020) 5847. https://doi.org/10.3390/en13215847

M. U. Mutarraf, Y. Terriche, K. A. K. Niazi, J. C. Vasquez, J. M. Guerrero, Energies 11 (2018) 3492. https://doi.org/10.3390/en11123492

P. K. D. Pramanik, N. Sinhababu, B. Mukherjee, S. Padmanaban, A. Maity, B. K. Upadhyaya, J. B. H. Nielsen, P. Choudhury, IEEE Access 7 (2019) 182113-182172. https://doi.org/10.1109/ACCESS.2019.2958684

N. Nitta, F. Wu, J. T. Lee, G. Yushin, Materials Today 18(5) (2015) 252-264. https://doi.org/10.1016/j.mattod.2014.10.040

S. Xin, Z. Chang, X. Zhang, and Y. G. Guo, National Science Review 4(1) (2017) 54-70. https://doi.org/10.1093/nsr/nww078

D. Lin, Y. Liu, and Y. Cui, Nature Nanotechnology 12(3) (2017) 194-206. https://doi.org/10.1038/nnano.2017.16

J. Lu, Z. Chen, F. Pan, Y. Cui, K. Amine, Electrochemical Energy Reviews 1(1) (2018) 35-53. https://doi.org/10.1007/s41918-018-0001-4

W. Lee, S. Muhammad, C. Sergey, H. Lee, J. Yoon, Y. M. Kang, W. S. Yoon, Angewandte Chemie 59(7) (2020) 2578-2605. https://doi.org/10.1002/anie.201902359

K. Wang, J. Wan, Y. Xiang, J. Zhu, Q. Leng, M. Wang, L. Xu, Y. Yang, Journal of Power Sources 460 (2020) 228062. https://doi.org/10.1016/j.jpowsour.2020.228062

S. Liu, B. Wang, X. Zhang, S. Zhao, Z. Zhang, H. Yu, Matter 4 (1511-1527) 2021. https://doi.org/10.1016/j.matt.2021.02.023

T. E. Mabokela, A. C. Nwanya, M. M. Ndipingwi, S. Kaba, P. Ekwere, S. T. Werry, C. O. Ikpo, K. D. Modibane, E. I. Iwuoh, Journal of The Electrochemical Society 168 (2021) 070530. https://doi.org/10.1149/1945-7111/ac0b58

S. Chen, X. Zhang, M. Xia, K. Wei, L. Zhang, X. Zhang, Y. Cui, J. Shu, Journal of Electroanalytical Chemistry 895 (2021) 115412. https://doi.org/10.1016/j.jelechem.2021.115412

Z. Yang, Y. Dai, S. Wang, J. Yu, Journal of Materials Chemistry A 4 (2016) 18210-18222. https://doi.org/10.1039/C6TA05048D

M. Malik, K. H. Chan, G. Azimi, Materials Today Energy 28 (2022) 101066. https://doi.org/10.1016/j.mtener.2022.101066

S. Wang, W. Quan, Z. Zhu, Y. Yang, Q. Liu, Y. Ren, X. Zhang, R. Xu, Y. Hong, Z. Zhang, K. Amine, Z. Tang, J. Lu, J. Li, Nature Communication 8 (2017) 627. https://doi.org/10.1038/s41467-017-00574-9

G. Bridgewater, M. J. Capener, J. Brandon, M. J. Lain, M. Copley, E. Kendrick, Batteries 7 (2021) 38. https://doi.org/10.3390/batteries7020038

P. Daubinger, M. Schelter, R. Petersohn, F. Nagler, S. Hartmann, M. Herrmann, G. A. Giffin, Advanced Energy Materials 12 (2022) 2102448. https://doi.org/10.1002/aenm.202102448

F. J. Günter, N. Wassiliadis, Journal of The Electrochemical Society 169 (2022) 030515. https://doi.org/10.1149/1945-7111/ac4e11

A. Manthiram, Y. Fu, S. H. Chung, C. Zu, Y. S. Su, Chemical Reviews 114(23) (2014) 11751-11787. https://doi.org/10.1021/cr500062v

K. M. Abraham, ACS Energy Letter 5(11) (2020) 3544-3547. https://doi.org/10.1021/acsenergylett.0c02181

H. F. Wang, Q. Xu, Matter 1 (2019) 565-595. https://doi.org/10.1016/j.matt.2019.05.008

Q. Zhao, S. Stalin, C. Z. Zhao, L. A. Archer, Nature Reviews Materials 5 (2020) 229-252. https://doi.org/10.1038/s41578-019-0165-5

C. Li, Z. Y. Wang, Z. J. He, Y. J. Li, J. Mao, K. H. Dai, C. Yan, J. C. Zheng, Sustainable Materials and Technologies 29 (2021) e00297. https://doi.org/10.1016/j.susmat.2021.e00297



08-02-2023 — Updated on 08-02-2023

How to Cite

Le, P.-A. (2023). A general introduction to lithium-ion batteries: From the first concept to the top six commercials and beyond: Review paper. Journal of Electrochemical Science and Engineering, 13(4), 591–604. https://doi.org/10.5599/jese.1544



Batteries and supercapcitors

Funding data