Electrochemical determination of amaranth in food samples by using modified electrode

Original scientific paper

Authors

  • Sayed Zia Mohammadi Department of Chemistry, Payame Noor University, Tehran, Iran https://orcid.org/0000-0001-6980-9121
  • Yar-Mohammad Baghelani Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, Iran https://orcid.org/0000-0001-5347-1744
  • Farideh Mousazadeh School of Medicine, Bam University of Medical Sciences, Bam, Iran
  • Shamsi Rahimi Department of Chemistry, Payame Noor University, Tehran, Iran
  • Maryam Mohammad-Hassani Department of Chemistry, Payame Noor University, Tehran, Iran https://orcid.org/0000-0001-6980-9121

DOI:

https://doi.org/10.5599/jese.1531

Keywords:

Electrochemical sensor, carbon paste electrode, activated carbon-Co3O4 nanocomposite
Graphical Abstract

Abstract

In this paper, a new electrochemical sensor was reported for the determination of amaranth in drink soft. In this sensor, activated carbon-Co3O4 nanocomposite (AC-Co3O4) was employ­ed as electrode modifying material. High pores of the activated carbon favour an access of aramanth nolecules within the pores of  the working electrode surface, and allow  fast electron transfer that is beneficial for the  electrochemical detecion process. Thus, the electrochemical signal is obviously enhanced at AC-Co3O4 modified electrode compared to bare carbon paste electrode, and exhibited a wide linear response ranging from 0.1-215 mM with a low detection limit of 10.0 nM (based on 3Sb/m). This work offers a new route in developing new electro­chemical sensors for the determination of collorant additives and other hazard components in drink soft.

Downloads

Download data is not yet available.

References

Y. Wu, G. Li, Y. Tian, J. Feng, J. Xiao, J. Liu, X. Liu, Q. He, Electropolymerization of mole-cularly imprinted polypyrrole film on multiwalled carbon nanotube surface for highly selective and stable determination of carcinogenic amaranth, Journal of Electroanalytical Chemistry 895 (2021) 115494. https://doi.org/10.1016/j.jelechem.2021.115494

Y. Xie, Y. Li, L. I. Niu, H. Wang, H. E. Qian, W. Yao, A novel surface-enhanced Raman scattering sensor to detect prohibited colorants in food by graphene/silver nanocomposite, Talanta 100 (2012) 32-37. https://doi.org/10.1016/j.talanta.2012.07.080

Y. Zhang, T. Gan, C. Wan, K. Wu, Morphology-controlled electrochemical sensing amaranth at nanomolar levels using alumina, Analytica Chimica Acta 764 (2013) 53-58. http://dx.doi.org/10.1016/j.aca.2012.12.020

P. Mpountoukas, A. Pantazaki, E. Kostareli, P. Christodoulou, D. Kareli, S. Poliliou, C. Mourelatos, V. Lambropoulou, T. Lialiaris, Cytogenetic evaluation and DNA interaction studies of the food colorants amaranth, erythrosine and tartrazine, Food and Chemical Toxicology 48 (2010) 2934-2944. https://doi.org/10.1016/j.fct.2010.07.030

V. K. Gupta, R. Jain, A. Mittal, T. A. Saleh, A. Nayak, S. Agarwal, S. Sikarwar, Photocatalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions, Materials Science and Engineering C 32 (2012) 12-17. https://doi.org/10.1016/j.msec.2011.08.018

A. Basu, G. S. Kumar, Interaction of toxic azo dyes with heme protein: Biophysical insights into the binding aspect of the food additive amaranth with human hemoglobin, Journal of Hazardous Materials 289 (2015) 204-209. https://doi.org/10.1016/j.jhazmat.2015.02.044

W. R. P. Barros, J. R. Steter, M. R. V. Lanza, A. J. Motheo, Degradation of amaranth dye in alkaline medium by ultrasonic cavitation coupled with electrochemical oxidation using a boron-doped diamond anode, Electrochimica Acta 143 (2014) 180-187. https://doi.org/10.1016/j.electacta.2014.07.141

K. Rovina, S. Siddiquee, S. M. Shaarani, Toxicology, extraction and analytical methods for determination of amaranth in food and beverage products, Trends in Food Science and Technology 65 (2017) 68-79. http://dx.doi.org/10.1016/j.tifs.2017.05.008

Y. Perdomo, V. Arancibia, O. García-Beltrán, E. Nagles, Adsorptive stripping voltammetric determination of amaranth and tartrazine in drinks and gelatins using a screen-printed carbon electrode, Sensors 17 (2017) 2665. https://doi.org/10.3390/s17112665

F. I. de Andrade, M. I. Florindo Guedes, I. G. Pinto Vieira, F. N. Pereira Mendes, P. A. Salmito Rodrigues, C. S. Costa Maia, M. M. Marques Avila, L. D. M. Ribeiro, Determination of synthetic food dyes in commercial soft drinks by TLC and ion-pair HPLC, Food Chemistry 157 (2014) 193-198. https://doi.org/10.1016/j.foodchem.2014.01.100

Y. Shen, X. Zhang, W. Prinyawiwatkul, Z. Xu, Simultaneous determination of red and yellow artificial food colourants and carotenoid pigments in food products, Food Chemistry 157 (2014) 553. https://doi.org/10.1016/j.foodchem.2014.02.039

X. Q. Li, Q. H. Zhang, K. Ma, H. M. Li, Z. Guo, Identification and determination of 34 water-soluble synthetic dyes in foodstuff by high performance liquid chromatography-diode array detection-ion trap time-of-flight tandem mass spectrometry, Food Chemistry 182 (2015) 316-326. https://doi.org/10.1016/j.foodchem.2015.03.019

C.-F. Tsai, C.-H. Kuo, D. Y.-C. Shih, Determination of 20 synthetic dyes in chili powders and syrup-preserved fruits by liquid chromatography/tandem mass spectrometry, Journal of Food and Drug Analysis 23 (2015) 453-462. https://doi.org/10.1016/j.jfda.2014.09.003

F. Martin, J.-M. Oberson, M. Meschiari, C. Munari, Determination of 18 water-soluble artificial dyes by LC-MS in selected matrices, Food Chemistry 197 (2016) 1249-1255. https://doi.org/10.1016/j.foodchem.2015.11.067

N. Elizabeth Llamas, M. Garrido, M. Susana Di Nezio, B. S. Fernandez Band, Second order advantage in the determination of amaranth, sunset yellow FCF and tartrazine by UV-vis and multivariate curve resolution-alternating least squares, Analytica Chimica Acta 655 (2009) 38-42. https://doi.org/10.1016/j.aca.2009.10.001

O. Sha, X. Zhu, Y. Feng, W. Ma, Aqueous two-phase based on ionic liquid liquid-liquid microextraction for simultaneous determination of five synthetic food colourants in different food samples by high-performance liquid chromatography, Food Chemistry 174 (2015) 380-386. https://doi.org/10.1016/j.foodchem.2014.11.068

Y. Ni, J. Bai, Simultaneous determination of amaranth and Sunset Yellow by ratio derivative voltammetry, Talanta 44 (1997) 105-109. https://doi.org/10.1016/S0039-9140(96)02028-0

J. Zhang, M. Wang, C. Shentu, W. Wang, Z. Chen, Simultaneous determination of the isomers of Ponceau 4R and amaranth using an expanded graphite paste electrode, Food Chemistry 160 (2014) 11-15. http://dx.doi.org/10.1016/j.foodchem.2014.03.078

L. Ji, Y. Zhang, S. Yu, S. Hu, K. Wu, Morphology-tuned preparation of nanostructured resorcinol-formaldehyde carbonized polymers as highly sensitive electrochemical sensor for amaranth, Journal of Electroanalytical Chemistry 779 (2016) 169-175. http://dx.doi.org/10.1016/j.jelechem.2016.03.011

Y. Gao, L. Wang, Y. Zhanga, L. Zoua, G. Lia, B. Yea, Electrochemical behavior of amaranth and its sensitive determination based on Pd-doped polyelectrolyte functionalized graphene modified electrode, Talanta 168 (2017) 146-151. http://dx.doi.org/10.1016/j.talanta.2017.03.035

J. ShaSha, Z. Huijun, Z. Li, Q. LingBo, Y. LanLan, electrochemical sensor based on poly(sodium 4-styrenesulfonate) functionalized graphene and Co3O4 nanoparticle clusters for detection of amaranth in soft drinks, Food Analytical Methods 10 (2017) 3149-3157. http://dx.doi.org/10.1007/s12161-017-0889-z

S. Z. Mohammadi, H. Beitollahi, T. Rohani, H. Allahabadi, S. Tajik, La2O3/Co3O4 nanocomposite modified screen printed electrode for voltammetric determination of sertraline, Journal of the Serbian Chemical Society 85 (2020) 505-515. https://doi.org/10.2298/JSC190326126M

S. Tajik, Z. Dourandish, K. Zhang, H. Beitollahi, Q.V. Le, H.W. Jang, M. Shokouhimehr, Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination, RSC Advances 10 (2020) 15406-15429. https://doi.org/10.1039/D0RA00799D

H. Beitollahi, S. Z. Mohammadi, S. Tajik, Electrochemical behavior of Morphine at the surface of magnetic core shell manganese ferrite nanoparticles modified screen printed electrode and its determination in real samples, International Journal of Nano Dimensions 10 (2019) 304-312. https://journals.iau.ir/article_662362_9f15b5034a739a32f6fe497715b93a47.pdf

S. Z. Mohammadi, H. Beitollahi, E. Bani Asadi, Electrochemical determination of hydrazine using a ZrO2 nanoparticles-modified carbon paste electrode. Environmental Monitoring and Assessment 187 (2015) 122. https://doi.org/10.1007/s10661-015-4309-9

S. Z. Mohammadi, H. Beitollahi, M. Kaykhaii, N. Mohammadizadeh, S. Tajik, R. Hossein¬za-deh, Simultaneous determination of droxidopa and carbidopa by carbon paste electrode functionalized with NiFe2O4 nanoparticle and 2-(4-ferrocenyl-[1,2,3]triazol-1-yl)-1-(naph-thalen-2-yl) ethenone, Measurement 155 (2020) 107522 https://doi.org/10.1016/j.measurement.2020.107522

S. Tajik, H. Beitollahi, P. Biparva, Methyldopa electrochemical sensor based on a glassy carbon electrode modified with Cu/TiO2 nanocomposite, Journal of the Serbian Chemical Society 83 (2018) 863-874. https://doi.org/10.2298/JSC170930024T

S. Z. Mohammadi, Hadi Beitollahi, M. Askari, R. Hosseinzadeh, Application of a modified carbon paste electrode using core–shell magnetic nanoparticle and modifier for simultaneous determination of norepinephrine, acetaminophen and tryptophan, Russian Journal of Electrochemistry 57 (2021) 74-84. https://doi.org/10.1134/S1023193521010079

S. Esfandiari Baghbamidi, H. Beitollahi, S. Tajik, R. Hosseinzadeh, Voltammetric sensor based on 1-benzyl-4-ferrocenyl-1h- [1,2,3]-triazole /carbon nanotube modified glassy carbon electrode; detection of hydrochlorothiazide in the presence of propranolol, International Journal of Electrochemical Science 11 (2016) 10874-10883. https://doi.org/10.20964/2016.12.92

S. Z. Mohammadi, H. Beitollahi, H. Allahabadi, T. Rohani, Disposable electrochemical sensor based on modified screen-printed electrode for sensitive cabergoline quantification, Journal of Electroanalytical Chemistry 847 (2019) 113223. https://doi.org/10.1016/j.jelechem.2019.113223

S. Z. Mohammadi, M. Dadkhodazadeh, T. Rohani, A novel multicomponent TMDC,

MoS2–WS2–CoSx, as an effective electrocatalyst for simultaneous detection ultra-levels of prednisolone and rutin in human body fluids, Microchemical Journal 164 (2021) 106019. https://doi.org/10.1016/j.microc.2021.106019

S. Z. Mohammadi, H. Beitollahi, M. Kaykhaii, N. Mohammadizadeh, A novel electrochemical sensor based on graphene oxide nanosheets and ionic liquid binder for differential pulse voltammetric determination of droxidopa in pharmaceutical and urine samples, Russian Journal of Electrochemistry 55 (2019) 1229-1236. https://doi.org/10.1134/S1023193519120127

S. Z. Mohammadi, S. Tajik, H. Beitollahi, Screen printed carbon electrode modified with magnetic core shell manganese ferrite nanoparticles for electrochemical detection of amlodipine, Journal of the Serbian Chemical Society 84 (2019) 1005-1016. https://doi.org/10.2298/JSC1810056036M

L. Li, H. Zheng, L. Guo, L. Qu, L. Yu, A sensitive and selective molecularly imprinted electrochemical sensor based on Pd-Cu bimetallic alloy functionalized graphene for detection of amaranth in soft drink, Talanta 197 (2019) 68–76. https://doi.org/10.1016/j.talanta.2019.01.009

S. Tvorynska, B. Josypčuk, J. Barek, L. Dubenska, Electrochemical behavior and sensitive methods of the voltammetric determination of food azo dyes amaranth and allura red AC on amalgam electrodes, Food Analytical Methods 12 (2018) 409-421. https://doi.org/10.1007/s12161-018-1372-1

J.-L. He, W. Kou, C. Li, J.-J. Cai, F.-Y. Kong, W. Wang, Electrochemical sensor based on single-walled carbon nanotube-TiN nannocomposites for detecting amaranth , International Journal of Electrochemical Science 10 (2015) 10074-10082. http://www.electrochemsci.org/papers/vol10/101210074.pdf

M. Sheikhshoaie, H. Karimi-Maleh, I. Sheikhshoaie, M. Ranjbar, Voltammetric amplified sensor employing RuO2 nano-road and room temperature ionic liquid for amaranth analysis in food samples, Journal of Molecular Liquids 229 (2017) 489-494. https://doi.org/10.1016/j.molliq.2016.12.088

J. A. Buledi, A. R.Solangi, A. Hyder, N. H. Khand, S. A. Memon, A. Mallah, N. Mahar, E. N. Dragoi, P. Show, M. Behzadpour, H. Karimi-Maleh, Selective oxidation of amaranth dye in soft drinks through tin oxide decorated reduced graphene oxide nanocomposite based electrochemical sensor, Food and Chemical Toxicology 165 (2022) 113177. https://doi.org/10.1016/j.fct.2022.113177

H. Beitollahi, F. Garakani Nejad, Z. Dourandish, S. Tajik, A novel voltammetric amaranth sensor based on screen printed electrode modified with polypyrrole nanotubes, Environmental Research 214 (2022) 113725. https://doi.org/10.1016/j.envres.2022.113725

P. Mohammadzadeh Jahani, M. R. Aflatoonian, R. Abbasi Rayeni, A. D. Bartolomeo, S. Z. Mohammadi, Graphite carbon nitride-modified screen-printed electrode as a highly sensitive and selective sensor for detection of amaranth, Food and Chemical Toxicology 163 (2022) 112962. https://doi.org/10.1016/j.fct.2022.112962

S. Z. Mohammadi, N. Mofidinasab, M. A. Karimi, A. Beheshti, Removal of methylene blue and Cd(II) by magnetic activated carbon–cobalt nanoparticles and its application to wastewater purification, International Journal of Environmental Science and Technology 17 (2020) 4815. https://doi.org/10.1007/s13762-020-02767-0

S.Z. Mohammadi, Z. Darijani, Z., M.A. Karimi, Fast and efficient removal of phenol by magnetic activated carbon cobalt nanoparticles, Journal of Alloys and Compounds 832 (2020) 154942. https://doi.org/10.1016/j.jallcom.2020.154942

M. Wang, M. Cui, M. Zhao, H. Cao, Sensitive determination of amaranth in foods using graphene nanomeshes, Journal of Electroanalytical Chemistry 809 (2018) 117-124. https://doi.org/10.1016/j.jelechem.2017.12.059

Q. He, J. Liu, X. Liu, G. Li, P. Deng, J. Liang, Manganese dioxide nanorods/electrochemically reduced graphene oxide nanocomposites modified electrodes for cost-effective and ultrasensitive detection of amaranth, Colloids and Surfaces B 172 (2018) 565-572. https://doi.org/10.1016/j.colsurfb.2018.09.005

A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edition, Wiley, New York, 2000, pp. 100-137. ISBN: 978-0-471-04372-0

Q. Zhang, W. Cheng, D. Wu, Y. Yang, X. Feng, C. Gao, L. Meng, X. Shen, Y. Zhang, X. Tang, An electrochemical method for determination of amaranth in drinks using functionalized graphene oxide/chitosan/ionic liquid nanocomposite supported nanoporous gold, Food Chemistry 367 (2022) 130727. https://doi.org/10.1016/j.foodchem.2021.130727

Published

04-11-2022

How to Cite

Mohammadi, S. Z., Baghelani, Y.-M. ., Mousazadeh, F. ., Rahimi, S. ., & Mohammad-Hassani, M. (2022). Electrochemical determination of amaranth in food samples by using modified electrode: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(6), 1165–1177. https://doi.org/10.5599/jese.1531

Issue

Section

Electroanalytical chemistry

Most read articles by the same author(s)