Lignin-based porous junction for silver-silver chloride reference electrodes
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1520Keywords:
Porous carbon material, carbonization, impedance spectroscopy
Abstract
Carbonized lignin powder was used as a salt bridge for a silver-silver chloride reference electrode. This easy-to-prepare reference electrode exhibited excellent stability in saturated potassium chloride solution. In addition, the electrochemical impedance spectra showed that the prepared reference electrode is stable in acidic, neutral, and basic aqueous solutions (pH 1 - 12) and has similar impedances to its glass frit equivalent.
Downloads
References
B. Rostami, S. I. Mirzaei, A. Zamani, A. Simchi, M. Fardmanesh, Development of an enhanced porosity AgAgCl reference electrode with improved stability, Engineering Research Express 1 (2019) 15039. https://doi.org/10.1088/2631-8695/ab4544
E. L. Anderson, T. P. Lodge, T. Gopinath, G. Veglia, P. Bühlmann, More than a Liquid Junction, Analytical Chemistry 91 (2019) 7698–7704. https://doi.org/10.1021/acs.analchem.9b00876
L. Godeffroy, F. Chau, O. Buriez, E. Labbé, Fast and complete electrochemical conversion of solutes contained in micro-volume water droplets, Electrochemistry Communications 86 (2018) 145–148. https://doi.org/10.1016/j.elecom.2017.12.007
I.-J. Park, S.-R. Choi, J.-G. Kim, Aluminum anode for aluminum-air battery – Part II, Journal of Power Sources 357 (2017) 47–55. https://doi.org/10.1016/j.jpowsour.2017.04.097
S. Ito, F. Kobayashi, K. Baba, Y. Asano, H. Wada, Development of long-term stable reference electrode with fluoric resin liquid junction, Talanta 43 (1996) 135–142. https://doi.org/10.1016/0039-9140(95)01723-2
J. F. Coetzee, C. W. Gardner, Teflon double-junction reference electrode for use in organic solvents, Analytical Chemistry 54 (1982) 2625–2626. https://doi.org/10.1021/ac00251a058
R. E. Dohner, D. Wegmann, W. E. Morf, W. Simon, Reference electrode with free-flowing free-diffusion liquid junction, Analytical Chemistry 58 (1986) 2585–2589. https://doi.org/10.1021/ac00125a053
G. Schimo, C. D. Grill, J. P. Kollender, A. W. Hassel, Hydrogel-based flexible micro-reference electrodes for use in alkaline and neutral pH solutions, Journal of Solid State Electrochemistry 20 (2016) 2749–2757. https://doi.org/10.1007/s10008-016-3257-9
A. W. Hassel, K. Fushimi, M. Seo, An agar-based silver|silver chloride reference electrode for use in micro-electrochemistry, Electrochemistry Communications 1 (1999) 180–183. https://doi.org/10.1016/S1388-2481(99)00035-1
K. A. Lill, A. W. Hassel, A combined μ-mercury reference electrode/Au counter-electrode system for microelectrochemical applications, Journal of Solid State Electrochemistry 10 (2006) 941–946. https://doi.org/10.1007/s10008-006-0158-3
J.-S. Lee, An Application of a Porous Charcoal Junction to a Reference Electrode in Acidic and Alkaline Solutions, Electrochemistry 88 (2020) 143–145. https://doi.org/10.5796/electrochemistry.20-00010.
M. P. S. Mousavi, S. A. Saba, E. L. Anderson, M. A. Hillmyer, P. Bühlmann, Avoiding Errors in Electrochemical Measurements, Analytical Chemistry 88 (2016) 8706–8713. https://doi.org/10.1021/acs.analchem.6b02025
B. K. Troudt, C. R. Rousseau, X. I. N. Dong, E. L. Anderson, P. Bühlmann, Recent progress in the development of improved reference electrodes for electrochemistry, Analytical Sciences 38 (2022) 71–83. https://doi.org/10.2116/analsci.21SAR11
J. Xiao, J. Han, C. Zhang, G. Ling, F. Kang, Q.-H. Yang, Dimensionality, Function and Performance of Carbon Materials in Energy Storage Devices, Advanced Energy Materials 12 (2022) 2100775. https://doi.org/10.1002/aenm.202100775
S. Breitenbach, J. Duchoslav, A. I. Mardare, C. Unterweger, D. Stifter, A. W. Hassel, C. Fürst, Comparative Behavior of Viscose-Based Supercapacitor Electrodes Activated by KOH, H2O, and CO2, Nanomaterials 12 (2022) 677. https://doi.org/10.3390/nano12040677
S. Breitenbach, N. Gavrilov, I. Pasti, C. Unterweger, J. Duchoslav, D. Stifter, A. W. Hassel, C. Fürst, Biomass-Derived Carbons as Versatile Materials for Energy-Related Applications, C 7 (2021) 55. https://doi.org/10.3390/c7030055
Y. Popat, D. Trudgeon, C. Zhang, F. C. Walsh, P. Connor, X. Li, Carbon Materials as Positive Electrodes in Bromine-Based Flow Batteries, ChemPlusChem 87 (2022) e202100441. https://doi.org/10.1002/cplu.202100441
R. Li, Y. Zhou, W. Li, J. Zhu, W. Huang, Structure Engineering in Biomass-Derived Carbon Materials for Electrochemical Energy Storage, Research 2020 (2020) 8685436. https://doi.org/10.34133/2020/8685436
S. Breitenbach, C. Unterweger, A. W. Hassel, C. Fürst, Activated carbon fibers derived from sea balls for the use as supercapacitor electrodes, Proceedings 13th International Conference on Nanomaterials - Research & Application (2021) 36–40. https://doi.org/10.37904/nanocon.2021.4308
A. Duval, M. Lawoko, A review on lignin-based polymeric, micro- and nano-structured materials, Reactive and Functional Polymers 85 (2014) 78–96. https://doi.org/10.1016/j.reactfunctpolym.2014.09.017
J. Lora, Monomers, Polymers and Composites from Renewable Resources, Elsevier, Amsterdam, The Netherlands, 2008, p. 225. https://doi.org/10.1016/B978-0-08-045316-3.00010-7
D. A. Baker, T. G. Rials, Recent advances in low-cost carbon fiber manufacture from lignin, Journal of Applied Polymer Science 130 (2013) 713–728. https://doi.org/10.1002/app.39273.
C. Enengl, A. Lumetzberger, J. Duchoslav, C. C. Mardare, L. Ploszczanski, H. Rennhofer, C. Unterweger, D. Stifter, C. Fürst, Influence of the carbonization temperature on the properties of carbon fibers based on technical softwood kraft lignin blends. Carbon Trends 5 (2021) 100094. https://doi.org/10.1016/j.cartre.2021.100094
E. Frank, L. M. Steudle, D. Ingildeev, J. M. Spörl, M. R. Buchmeiser, Carbon Fibers: Precursor Systems, Processing, Structure, and Properties. Angewandte Chemie (International Edition). 53 (2014) 5262–5298. https://doi.org/10.1002/anie.201306129
Y. Nordström, R. Joffe, E. Sjöholm, Mechanical characterization and application of Weibull statistics to the strength of softwood lignin-based carbon fibers, Journal of Applied Polymer Science 130 (2013) 3689–3697. https://doi.org/10.1002/app.39627
S. Wang, J. Bai, M. T. Innocent, Q. Wang, H. Xiang, J. Tang, M. Zhu, Lignin-based carbon fibers, Green Energy & Environment 7 (2022) 578–605. https://doi.org/10.1016/j.gee.2021.04.006
V. Poursorkhabi, M. A. Abdelwahab, M. Misra, H. Khalil, B. Gharabaghi, A. K. Mohanty, Processing, Carbonization, and Characterization of Lignin Based Electrospun Carbon Fibers, Frontiers in Energy Research 8 (2020) 497. https://doi.org/10.3389/fenrg.2020.00208
W. Fang, S. Yang, X.-L. Wang, T.-Q. Yuan, R.-C. Sun, Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs), Green Chemistry 19 (2017) 1794–1827. https://doi.org/10.1039/C6GC03206K
Z. Li, Y. Ge, L. Wan, Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media, Journal of Hazardous Materials 285 (2015) 77–83. https://doi.org/10.1016/j.jhazmat.2014.11.033
D. Kim, J. Cheon, J. Kim, D. Hwang, I. Hong, O. H. Kwon, W. H. Park, D. Cho, Extraction and characterization of lignin from black liquor and preparation of biomass-based activated carbon there-from, Carbon Letters 22 (2017) 81–88. https://doi.org/10.5714/CL.2017.22.081
J. Köhnke H. Rennhofer, C. Unterweger, N. Gierlinger, J. Keckes, C. Zollfrank, O. J. Rojas, W. Gindl-Altmutter, Electrically-Conductive Sub-Micron Carbon Particles from Lignin, Nanomaterials 8 (2018) 1055. https://doi.org/10.3390/nano8121055
W. Gindl-Altmutter, C. Fürst, A. R. Mahendran, M. Obersriebnig, G. Emsenhuber, M. Kluge, S. Veigel, J. Keckes, F. Liebner, Electrically conductive kraft lignin-based carbon filler for polymers, Carbon 89 (2015) 161–168. https://doi.org/10.1016/j.carbon.2015.03.042
J. Köhnke, C. Fürst, C. Unterweger, H. Rennhofer, H. C. Lichtenegger, J. Keckes, G. Emsenhuber, A. R. Mahendran, F. Liebner, W. Gindl-Altmutter, Carbon Microparticles from Organosolv Lignin as Filler for Conducting Poly(Lactic Acid), Polymers 8 (2016) 205. https://doi.org/10.3390/polym8060205
J.-S. Lee, Use of a charcoal salt bridge to a reference electrode in an alkaline solution, Journal of Electroanalytical Chemistry 859 (2020) 113872. https://doi.org/10.1016/j.jelechem.2020.113872
B. Iatridis, G. R. Gavalas, Pyrolysis of a Precipitated Kraft Lignin, Industrial & Engineering Chemistry Product Research and Development 18 (1979) 127–130. https://doi.org/10.1021/i360070a010
M. E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy 2nd Edition, John Wiley & Sons Inc., Hoboken, USA, 2017. ISBN: 978-1-119-34092-8
A. Lasia, Electrochemical Impedance Spectroscopy and its Applications, Springer, New York, USA, 2014. ISBN: 978-1-4614-8933-7
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.