Artificial intelligence in use of ZrO2 material in biomedical science
Review paper
DOI:
https://doi.org/10.5599/jese.1498Keywords:
Biomedical engineering, artificial intelligence, machine learning, zirconia![Graphical Abstract](https://pub.iapchem.org/ojs/public/journals/3/article_1498_cover_en_US.jpg)
Abstract
The rapidly growing discipline of artificial intelligence (AI) seeks to develop software and computers that can do tasks that have historically required the intelligence of people. Machine learning (ML) is a subfield of AI that makes use of algorithms to "learn" from data's innate statistical patterns and structures to extrapolate information that is otherwise hidden. A growing emphasis on cosmetic dentistry has coincided with rise of ZrO2 to prominence as a result of its improved biocompatibility, visually pleasant look, strong oxidation resistance, better mechanical properties, and lack of documented allergic responses. Advances in the field of AI and ML have led to novel applications of ZrO2 in dental devices for biological objectives. Artificial intelligence (AI) technologies have attracted a lot of attention in ZrO2-related research and therapeutic applications due to their ability to analyze data and discover connections between seemingly unrelated events. Specifically, their incorporation into zirconia is largely responsible for this. Versatility of zirconia in the scientific community means that how AI is used in the area varies with the specific directions in which zirconia is utilized. Therefore, this article primarily focuses on the use of AI in the biomedical use of ZrO2 in dentistry.
Downloads
References
T. Joda, M. Ferrari, G. O. Gallucci, J.-G. Wittneben, U. Brägger, Digital technology in fixed implant prosthodontics, Periodontol 2000 73 (2017) 178-192. https://doi.org/10.1111/prd.12164
P. Jain, M. Gupta, Digitization in dentistry: Clinical applications, Springer Nature, Cham, Switzerland, 2021. https://doi.org/10.1007/978-3-030-65169-5
J. M. Helm, A. M. Swiergosz, H. S. Haeberle, J. M. Karnuta, J. L. Schaffer, V. E. Krebs, A. I. Spitzer, P. N. Ramkumar, Machine Learning and artificial intelligence: Definitions, applications, and future directions, Current Reviews in Musculoskeletal Medicine 13 (2020) 69-76. https://doi.org/10.1007/s12178-020-09600-8
S. Deshmukh, Artificial intelligence in dentistry, Journal of International Clinical Dental Research Organisation 10 (2018) 47-48. https://doi.org/10.4103/jicdro.jicdro_17_18.
H. Vasudev, L. Thakur, H. Singh, A. Bansal, Erosion behaviour of HVOF sprayed Alloy718-nano Al2O3 composite coatings on grey cast iron at elevated temperature conditions, Surface Topography: Metrology and Properties 9 (2021) 035022. https://doi.org/10.1088/2051-672X/ac1c80
M. Singh, H. Vasudev, R. Kumar, Corrosion and tribological behaviour of BN thin films deposited using magnetron sputtering, International Journal of Surface Engineering and Interdisciplinary Materials Science 9 (2021) 24-39. https://doi.org/10.4018/IJSEIMS.2021070102
G. Singh, H. Vasudev, A. Bansal, S. Vardhan, S. Sharma, Microwave cladding of Inconel-625 on mild steel substrate for corrosion protection, Materials Research Express 7 (2020) 026512. https://doi.org/10.1088/2053-1591/ab6fa3
H. Vasudev, G. Prashar, L. Thakur, A. Bansal, Electrochemical corrosion behavior and microstructural characterization of HVOF sprayed Inconel-718 coating on gray cast iron, Journal of Failure Analysis and Prevention 21 (2020) 250-260. https://doi.org/10.1007/s11668-020-01057-8
H. Vasudev, G. Prashar, L. Thakur, A. Bansal, Electrochemical corrosion behavior and microstructural characterization of HVOF, Surface Topography: Metrology and Properties 29 (2022) 2250017. https://doi.org/10.1142/S0218625X22500172
G. Prashar, H. Vasudev, L. Thakur, High-temperature oxidation and erosion resistance of Ni-based thermally-sprayed coatings used in power generation machinery : A review, Surface Topography: Metrology and Properties 29 (2022) 2230003. https://doi.org/10.1142/S0218625X22300039
G. Prashar, H. Vasudev, Influence of heat treatment on surface properties of HVOF deposited WC and Ni-based powder coatings : a review, Surface Topography: Metrology and Properties 9 (2021) 43002. https://doi.org/10.1088/2051-672X/ac3a52
P. Singh, H. Vasudev, A. Bansal, Effect of post-heat treatment on the microstructural , mechanical, and bioactivity behavior of the microwave- assisted alumina-reinforced hydroxyapatite cladding, Proceeding of IMechE Part E Journal of Process Mechanical Engineering (2022). https://doi.org/10.1177/09544089221116168
P. Singh, A. Bansal, H. Vasudev, In situ surface modification of stainless steel with hydroxyapatite using microwave heating, Surface Topography: Metrology and Properties 9 (2021) 35053. https://doi.org/10.1088/2051-672X/ac28a9
H. Vasudev, G. Prashar, L. Thakur, A. Bansal, Microstructural characterization and electrochemical corrosion behaviour of HVOF sprayed Alloy718-nanoAl2O3 composite coatings, Surface Topography: Metrology and Properties 9 (2021) 35003. https://doi.org/10.1088/2051-672X/ac1044
G. Singh, H. Vasudev, A. Bansal, Influence of heat treatment on the microstructure and corrosion properties of the Inconel-625 clad deposited by microwave heating, Surface Topography: Metrology and Properties 9 (2021) 025019. https://doi.org/10.1088/2051-672X/abfc61
G. Prashar, H. Vasudev, Parameters and heat treatment on the corrosion performance of NI-based thermally sprayed coatings, Surface Reviews Letters 29 (2022) 2230001. https://doi.org/10.1142/S0218625X22300015
M. Singh, H. Vasudev, M. Singh, Surface protection of SS-316L with boron nitride based thin films using radio frequency magnetron sputtering technique, Journal of Electrochemical Science and Engineering 12(5) (2022) 851-863. https://doi.org/10.5599/jese.1247
V. Dutta, L. Thakur, B. Singh, H. Vasudev, A study of erosion - corrosion behaviour of friction stir-processed chromium-reinforced NiAl bronze composite, Materials 15 (2022) 5401. https://doi.org/doi.org/10.3390/ma15155401
Y. W. Chen, J. Moussi, J. L. Drury, J. C. Wataha, Zirconia in biomedical applications, Expert Review of Medical Devices 13 (2016) 945-963. https://doi.org/10.1080/17434440.2016.1230017
J. Singh, S. Kumar, S. K. Mohapatra, Tribological performance of Yttrium (III) and Zirconium (IV) ceramic-reinforced WC–10Co4Cr cermet powder HVOF thermally sprayed on X2CrNiMo-17-12-2 steel, Ceramics International 45 (2019) 23126–23142. https://doi.org/10.1016/j.ceramint.2019.08.007
J. Singh, S. Singh, R. Gill, Applications of Biopolymer Coatings in Biomedical Engineering, Journal of Electrochemical Science and Engineering 13(1) (2022) 63-81. https://doi.org/10.5599/jese.1460
J. Singh, S. Kumar, S. K. Mohapatra, An erosion and corrosion study on thermally sprayed WC-Co-Cr powder synergized with Mo2C/Y2O3/ZrO2 feedstock powders, Wear 438 (2019) 102751. https://doi.org/10.1016/j.wear.2019.01.082
C. Gilvary, N. Madhukar, J. Elkhader, O. Elemento, The missing pieces of artificial intelligence in medicine, Trends in Pharmacological Sciences 40 (2019) 555-564. https://doi.org/10.1016/j.tips.2019.06.001
V. I. Ignatyev, A. V. Privalov, Artificial Intelligence as the technosubject of hybrid society, Advances in Social Science, Education and Humanities Research 333 (2019) 47-51. https://doi.org/10.2991/hssnpp-19.2019.9
M. Saboktakin, Medical Applications of poly methyl methacrylate nanocomposites, JSMC Nanotechnology and Nanomedicine 3 (2019) 1-7. https://www.jsmcentral.org/Nanotechnology/jsmcnn465321.pdf
I. González-Carrasco, J. L. Jiménez-Márquez, J. L. López-Cuadrado, B. Ruiz-Mezcua, Automatic detection of relationships between banking operations using machine learning, Information Sciences 485 (2019) 319-346. https://doi.org/10.1016/j.ins.2019.02.030
W. B. Mao, J. Y. Lyu, D. K. Vaishnani, Y. M. Lyu, W. Gong, X. L. Xue, Y. P. Shentu, J. Ma, Application of artificial neural networks in detection and diagnosis of gastrointestinal and liver tumors, World Journal of Clinical Cases 8 (2020) 3971-3977. https://doi.org/10.12998/wjcc.v8.i18.3971
L. Yang, A. M. Maceachren, P. Mitra, T. Onorati, Visually-enabled active deep learning for (geo) text and image classification, ISPRS International Journal of Geo-Information 7 (2018) 65. https://doi.org/10.3390/ijgi7020065
K. Hung, C. Montalvao, R. Tanaka, T. Kawai, M. M. Bornstein, The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review, Dentomaxillofacial Radiology 49 (2020) 20190107. https://doi.org/10.1259/dmfr.20190107
P. Li, D. Kong, T. Tang, D. Su, P. Yang, H. Wang, Z. Zhao, Y. Liu, Orthodontic treatment planning based on artificial neural networks, Scientific Reports 9 (2019) 2037. https://doi.org/10.1038/s41598-018-38439-w
Y. Chen, K. Stanley, D. Att, M. Dent, Artificial intelligence in dentistry : current applications and future perspectives, Quintessence International 51 (2020) 248-257. https://doi.org/10.3290/j.qi.a43952
G. Li, T. Hsung, W. Ling, W. H. Lam, G. Pelekos, C. McGrath, Automatic site-specific multiple level gum disease detection based on deep neural network, in: 15th International Symposium on Medical Information and Communication Technology (ISMICT), Xiamen, Xiamen, 2021, 201-205. https://doi.org/10.1109/ISMICT51748.2021.9434936
J. Luis, O. Simon, A. M. Martinez, D. L. Espinoza, Mechatronic assistant system for dental drill handling, The International Journal of Medical Robotics and Computer Assisted Surgery 7 (2011) 22-26. https://doi.org/10.1002/rcs.363
J. Grischke, L. Johannsmeier, L. Eich, L. Griga, S. Haddadin, Dentronics : Towards robotics and artificial intelligence in dentistry, Dental Materials 36 (2020) 765-778. https://doi.org/10.1016/j.dental.2020.03.021
F. Yuan, P. Lyu, A preliminary study on a tooth preparation robot, : Advances in Applied Ceramics 119 (2019) 332-337. https://doi.org/10.1080/17436753.2019.1666555
D. Wang, L. Wang, Preliminary study on a miniature laser manipulation robotic device for tooth crown preparation, The International Journal of Medical Robotics and Computer Assisted Surgery 10 (2014) 482-494. https://doi.org/10.1002/rcs.1560
J. Li, Z. Shen, W. Xu, W. Lam, R. Hsung, E. Pow, K. Kosuge, Z. Wang, A compact dental robotic system using soft bracing technique, IEEE Robotics and Automation Letters 4 (2019) 1271-1278. https://doi.org/10.1109/LRA.2019.2894864
A. Geminiani, T. Abdel-Azim, C. Ercoli, C. Feng, L. Meirelles, D. Massironi, Influence of oscillating and rotary cutting instruments with electric and turbine handpieces on tooth preparation surfaces, Journal of Prosthetic Dentistry 112 (2014) 51-58. https://doi.org/10.1016/j.prosdent.2014.02.007
T. Otani, A. J. Raigrodski, L. Mancl, I. Kanuma, J. Rosen, In vitro evaluation of accuracy and precision of automated robotic tooth preparation system for porcelain laminate veneers, Journal of Prosthetic Dentistry 114 (2015) 229-235. https://doi.org/10.1016/j.prosdent.2015.02.021
P. Korzynski, M. Haenlein, M. Rautiainen, Impression management techniques in crowdfunding: An analysis of Kickstarter videos using artificial intelligence, European Management Journal 39 (2021) 675-684. https://doi.org/10.1016/j.emj.2021.01.001
D. Tandon, J. Rajawat, M. Banerjee , Present and future of artificial intelligence in dentistry, Journal of Oral Biology and Craniofacial Research 10 (2020) 391-396. https://doi.org/10.1016/j.jobcr.2020.07.015
K. C. Lee, S. J. Park, Digital intraoral scanners and alginate impressions in reproducing full dental arches : A comparative 3D assessment, Applied Sciences 10 (2020) 7637. https://doi.org/10.3390/app10217637
F. A. Spitznagel, S. D. Horvath, P. C. Gierthmuehlen, Prosthetic protocols in implant-based oral rehabilitations: A systematic review on the clinical outcome of monolithic all-ceramic single- and multi-unit prostheses, European Journal of Oral Implantology 10 (2017) 89-99. http://www.quintpub.com/userhome/ejoi/ejoi_10_5_spitznagel_p89.pdf
G. Hack, L. Liberman, K. Vach, J. P. Tchorz, R. J. Kohal, S. B. M. Patzelt, Computerized optical impression making of edentulous jaws - An in vivo feasibility study, Journal of Prosthodontic Research 64 (2020) 444-453. https://doi.org/10.1016/j.jpor.2019.12.003
H. Gao, X. Liu, M. Liu, X. Yang, J. Tan, Accuracy of three digital scanning methods for complete-arch tooth preparation: an in vitro. comparison, Journal of Prosthetic Dentistry 128(5)(2021) 1001-1008. https://doi.org/10.1016/j.prosdent.2021.01.029
K. C. Oh, B. Lee, Y. B. Park, H. S. Moon, Accuracy of three digitization methods for the dental arch with various tooth preparation designs: An in vitro study, Journal of Prosthodontics 28 (2019) 195-201. https://doi.org/10.1111/jopr.12998
R. Touati, R. Richert, C. Millet, J. C. Farges, I. Sailer, M. Ducret, Comparison of two innovative strategies using augmented reality for communication in aesthetic dentistry: A pilot study, Journal of Healthcare Engineering 2019 (2019) 7019046. https://doi.org/10.1155/2019/7019046
E. D. Rekow, Digital dentistry: The new state of the art — Is it disruptive or destructive?, Dental Materials 36 (2020) 9-24. https://doi.org/10.1016/j.dental.2019.08.103
N. Parmar, A. B. Eisingerich, L. Dong, Connecting with your dentist on Facebook: Patients’ and dentists’ attitudes towards social media usage in dentistry, Journal of Medical Internet Research 20(6) (2018) e10109. https://doi.org/10.2196/10109
M. B. Blatz, G. Chiche, O. Bahat, R. Roblee, C. Coachman, H. O. Heymann, Evolution of aesthetic dentistry, Journal of Dental Research 98 (2019) 1294-1304. https://doi.org/10.1177/0022034519875450
D. Leeson, The digital factory in both the modern dental lab and clinic, Dental Materials 36 (2020) 43-52. https://doi.org/10.1016/j.dental.2019.10.010
A. J. Smithá, P. N. Savitha, Shade matching in aesthetic dentistry - from past to recent advances, Journal of Dentistry and Oral Care Medicine 3 (2017) 102. https://doi.org/10.15744/2454-3276.3.102
D. Omar, C. Duarte, The application of parameters for comprehensive smile esthetics by digital smile design programs: A review of literature, The Saudi Dental Journal 30 (2018) 7-12. https://doi.org/10.1016/j.sdentj.2017.09.001
Y. Alfawaz, Zirconia crown as single unit tooth restoration, Journal of Con¬temporary Dental Practice 17 (2016) 418-422. https://doi.org/10.5005/jp-journals-10024-1865
T. Hanawa, Zirconia versus titanium in dentistry: A review, Dental Materials Journal 39 (2020) 24-36. https://doi.org/10.4012/dmj.2019-172
T. Stober, J. L. Bermejo, P. Rammelsberg, M. Schmitter, Enamel wear caused by monolithic zirconia crowns after 6 months of clinical use, Journal of Oral Rehabilitation 41 (2014) 314-322. https://doi.org/10.1111/joor.12139
S. M. Fathy, M. V. Swain, In-vitro wear of natural tooth surface opposed with zirconia reinforced lithium silicate glass ceramic after accelerated ageing, Dental Materials 34 (2018) 551-559. https://doi.org/10.1016/j.dental.2017.12.010
K. Mundhe, V. Jain, G. Pruthi, N. Shah, Clinical study to evaluate the wear of natural enamel antagonist to zirconia and metal ceramic crowns, Journal of Prosthetic Dentistry 114 (2015) 358-363. https://doi.org/10.1016/j.prosdent.2015.03.001
B. E. Pjetursson, N. A. Valente, M. Strasding, M. Zwahlen, S. Liu, I. Sailer, A systematic review of the survival and complication rates of zirconia-ceramic and metal-ceramic single crowns, Clinical Oral Implants Research 29 (2018) 199-214. https://doi.org/10.1111/clr.13306
Y. Zhang, B. R. Lawn, Novel zirconia materials in dentistry, Journal of Dental Research 97 (2018) 140-147. https://doi.org/10.1177/0022034517737483
M. G. Botelho, S. Dangay, K. Shih, W. Y. H. Lam, The effect of surface treatments on dental zirconia: An analysis of biaxial flexural strength, surface roughness and phase transformation, Journal of Dentistry 75 (2018) 65-73. https://doi.org/10.1016/j.jdent.2018.05.016
Y. Wang, W. Y. H. Lam, H. W. K. Luk, M. Øilo, K. Shih, M. G. Botelho, The adverse effects of tungsten carbide grinding on the strength of dental zirconia, Dental Materials 36 (2020) 560-569. https://doi.org/10.1016/j.dental.2020.02.002
D. Hashim, N. Cionca, D. S. Courvoisier, A. Mombelli, A systematic review of the clinical survival of zirconia implants, Clinical Oral Investigations 20 (2016) 1403-1417. https://doi.org/10.1007/s00784-016-1853-9
L. Porojan, F. Topală, S. Porojan, Assessment of All-Ceramic Dental Restorations Behavior by Development of Simulation-Based Experimental Methods, Insights into Various Aspects of Oral Health, IntechOpen, London, 2017, 173-191. ISBN: 978-953-51-4647-6 https://doi.org/10.5772/intechopen.69162
X. Shen, J. Li, X. Luo, Y. Feng, L. Gai, F. He, Peri-implant marginal bone changes with implant-supported metal-ceramic or monolithic zirconia single crowns: A retrospective clinical study of 1 to 5 years, Journal of Prosthetic Dentistry 128 (2021) 368-374. https://doi.org/10.1016/j.prosdent.2020.12.010
H. Lerner, J. Mouhyi, O. Admakin, F. Mangano, Artificial intelligence in fixed implant prosthodontics: A retrospective study of 106 implant-supported monolithic zirconia crowns inserted in the posterior jaws of 90 patients, BMC Oral Health 20 (2020) 80. https://doi.org/10.1186/s12903-020-1062-4
I. J. Aliaga, V. Vera, J. F. De Paz, A. E. García, M. S. Mohamad, Modelling the longevity of dental restorations by means of a CBR system, BioMed Research International 2015 (2015) 540306. https://doi.org/10.1155/2015/540306
S. Yamaguchi, C. Lee, O. Karaer, S. Ban, A. Mine, S. Imazato, Predicting the debonding of CAD/CAM Composite resin crowns with AI, Journal of Dental Research 98 (2019) 1234-1238. https://doi.org/10.1177/0022034519867641
F. Tabatabaian, Color in zirconia-based restorations and related factors: A literature review, Journal of Prosthodontics 27 (2018) 201-211. https://doi.org/10.1111/jopr.12740
H. Li, L. Lai, L. Chen, C. Lu, Q. Cai, The prediction in computer color matching of dentistry based on GA+BP neural network, Computational and Mathematical Methods in Medicine 2015 (2015) 540306. https://doi.org/10.1155/2015/816719
B. Thanathornwong, S. Suebnukarn, K. Ouivirach, Decision support system for predicting color change after tooth whitening, Computer Methods and Programs in Biomedicine 125 (2016) 88-93. https://doi.org/10.1016/j.cmpb.2015.11.004
A. Vechiato-Filho, A. Pesqueira, G. De Souza, D. dos Santos, E. Pellizzer, M. Goiato, Are zirconia implant abutments safe and predictable in posterior regions? A systematic review and meta-analysis, The International Journal of Prosthodontics 29 (2016) 233-244. https://doi.org/10.11607/ijp.4349
U. Schepke, M. Gresnigt, W. Browne, S. Abdolahzadeh, J. Nijkamp, M. Cune, Phase transformation and fracture load of stock and CAD/CAM‐customized zirconia abutments after 1 year of clinical function, Clinical Oral Implants Research 30 (2019) 559-569. https://doi.org/10.1111/clr.13442
F. Mangano, C. Mangano, B. Margiani, O. Admakin, Combining intraoral and face scans for the design and fabrication of computer-assisted design / computer-assisted manufacturing (CAD/CAM) Polyether-Ether-Ketone (PEEK) implant-supported bars for maxillary overdentures, Scanning 2019 (2019) 4274715. https://doi.org/10.1155/2019/4274715
F. Mangano, B. Margiani, O. Admakin, A novel full-digital protocol (SCAN-PLAN-MAKE-DONE®) for the design and fabrication of implant-supported monolithic translucent zirconia crowns cemented on customized hybrid abutments: A retrospective clinical study on 25 patients, International Journal of Environmental Research and Public Health 16 (2019) 347. https://doi.org/10.3390/ijerph16030317
M. Park, S. Shin, Three-dimensional comparative study on the accuracy and reproducibility of dental casts fabricated by 3D printers, The Journal of Prosthetic Dentistry 119(5) (1983) p861.e1-861.e7. https://doi.org/10.1016/j.prosdent.2017.08.020
S. Kulkarni, N. Seneviratne, M. S. Baig, A. Hamid, A. Khan, Artificial intelligence in medicine : Where are we now? Academic Radiology 27 (2020) 62-70. https://doi.org/10.1016/j.acra.2019.10.001
A. Serra, M. Fratello, L. Cattelani, I. Liampa, G. Melagraki, P. Kohonen, P. Nymark, A. Federico, Transcriptomics in Toxicogenomics , Part III : Data Modelling for Risk Assessment, Nanomaterials 10 (2020) 708. https://doi.org/10.3390/nano10040708
S. Arif, M. T. Alam, A. H. Ansari, M. B. N. Shaikh, M. A. Siddiqui, Analysis of tribological behaviour of zirconia reinforced Al-SiC hybrid composites using statistical and artificial neural network technique, Materials Research Express 5(5) (2018) 056506. https://doi.org/10.1088/2053-1591/aabec8
Z. Du, X. Zhou, P. Ye, X. Zeng, C. L. Gan, Shape-memory actuation in aligned zirconia nanofibers for artificial muscle applications at elevated temperatures, ACS Applied Nano Materials 3 (2020) 2156-2166. https://doi.org/10.1021/acsanm.9b02073
C. Wang, A. Tharval, J. R. Kitchin, A density functional theory parameterised neural network model of zirconia, Molecular Simulation 44 (2018) 623-630. https://doi.org/10.1080/08927022.2017.1420185
J. Singh, S. Singh, Materials Science & Engineering B A review on Machine learning aspect in physics and mechanics of glasses, Materials Science and Enginering B 284 (2022) 115858. https://doi.org/10.1016/j.mseb.2022.115858
Downloads
Published
How to Cite
Issue
Section
License
![Creative Commons лиценца](https://i.creativecommons.org/l/by/4.0/88x31.png)
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.