Brief review on carbon derivatives based ternary metal oxide composite electrode materials for lithium-ion batteries

Review paper

Authors

  • Veerabhadrachar Pavitra Department of Nanotechnology, College of Engineering and Technology, Srinivas University, Mukka, Mangaluru-574146, Karnataka, India and Energy Materials Research Laboratory, Department of Chemistry, Siddaganga Institute of Technology (Affiliated to VTU, Belagavi), Tumakuru-572103, India https://orcid.org/0000-0003-1319-1136
  • Isha Soni Laboratory of Quantum Electrochemistry School of Advanced Chemical Sciences, Shoolini University, Bajhol, Solan, Himachal Pradesh 173229, India https://orcid.org/0000-0002-6850-8607
  • Beekanahalli Mokshanatha Praveen Department of Nanotechnology, College of Engineering and Technology, Srinivas University, Mukka, Mangaluru-574146, Karnataka, India https://orcid.org/0000-0003-2895-5952
  • Ganganagappa Nagaraju Energy Materials Research Laboratory, Department of Chemistry, Siddaganga Institute of Technology (Affiliated to VTU, Belagavi), Tumakuru-572103, India

DOI:

https://doi.org/10.5599/jese.1470

Keywords:

Nanoparticles, SnO2, ZnO, MoO3, ternary composite, LIBs, SiOx
Graphical Abstract

Abstract

Revolutionized lithium-ion batteries (LIB) have taken a very important role in our day today life by powering all sorts of electric devices. The selection of electrode materials is very im­portant, which impacts the electrochemical performance of LIBs. Advancements in the elec­trode materials and synthesis procedure greatly influence the electroc­he­mical performance. This review discusses the carbon derivatives based ternary composite as electrode mate­rials. A detailed explanation of the ternary electrode materials synthesis and spectroscopic, microscopic and electrochemical analysis of LIBs has been carried out in this study. Ternary composites are composed of highly conducting carbon derivatives, which are incorporated with SnO2/ZnO/MoO3/SiOx and additionally any one metal oxide. Carbon derivatives-based ternary metal oxide com­posites can exhibit enhanced electro­chemical results based on their heterostructures. The availability of more active sites contributes the reversible topotactic reactions during the charging-discharging process due to the porosity and other unique structures of different dimensions of the electrode materials. Concepts and strategies can extend the focus on developing the ternary metal oxides for high-performance LIBs.

Downloads

Download data is not yet available.

References

G. E. Blomgren, The development and future of lithium-ion batteries, Journal of the Electrochemical Society 164 (2016) A5019. https://doi.org/10.1149/2.0251701jes

R. Tian, G. Liu, H. Liu, L. Zhang, X. Gu, Y. Guo, H. Wang, Very high power and superior rate capability LiFePO4 nanorods hydrothermally synthesized using tetraglycol as surfactant, RSC Advances 5 (2015) 1859-1866. https://doi.org/10.1039/C4RA09776A

C. Liu, U. Burghaus, F. Besenbacher, Z. L. Wang, Preparation and characterization of nanomaterials for sustainable energy production, ACS Nano 4 (2010) 5517-5526. http://doi.org/10.1021/nn102420c

B. Goodenough, K. S. Park, The Li-ion rechargeable battery: a perspective, Journal of the American Chemical Society 135 (2013) 1167-1176. https://doi.org/10.1021/ja3091438

S. Wu, R. Xu, M. Lu, R. Ge, J. Iocozzia, C. Han, B. Jiang, Graphene‐containing nanomaterials for lithium‐ion batteries, Advanced Energy Materials 5 (2015) 1500400. https://doi.org/10.1002/aenm.201500400

L. Liu, F. Xie, J. Lyu, T. Zhao, T. Li, B. G. Choi, Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries, Journal of Power Sources 321 (2016) 11-35. https://doi.org/10.1016/j.jpowsour.2016.04.105

N. Mahne, S. E. Renfrew, B. D. McCloskey, S. A. Freunberger, Electrochemical oxidation of lithium carbonate generates singlet oxygen, Angewandte Chemie International Edition 57 (2018) 5529-5533. https://doi.org/10.1002/anie.201802277

M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari, Metal oxides and oxysalts as anode materials for Li-ion batteries, Chemical Reviews 113 (2013) 5364-5457. https://doi.org/10.1021/cr3001884

S. Alagar, C. Karuppiah, R. Madhuvilakku, S. Piraman, Temperature-controlled synthesis of Li-and Mn-rich Li1.2Mn0.54Ni0.13Co0.13O2 hollow nano/ sub-microsphere electrodes for high-performance lithium-ion battery, ACS Omega 4 (2019) 20285-20296. https://doi.org/10.1021/acsomega.9b02766

C. Ai, M. Yin, C. Wang, J. Sun, Synthesis and characterization of spinel type ZnCo2O4 as a novel anode material for lithium-ion batteries, Journal of Materials Science 39 (2004) 1077-1079. http://doi.org/10.1023/b:jmsc.0000012948.27433.83

H. Aghamohammadi, R. Eslami-Farsani, E. Castillo-Martinez, Recent trends in the development of MXenes and MXene-based composites as anode materials for Li-ion batteries, Journal of Energy Storage 47 (2022) 103572. https://doi.org/10.1016/j.est.2021.103572

Q. Shi, J. Zhou, S. Ullah, X. Yang, K. Tokarska, B. Trzebicka, M. H. Rummeli, A Review of Recent Developments in Si/C Composite Materials for Li-ion Batteries, Energy Storage Materials 3 (2021) 735-754. https://doi.org/10.1016/j.ensm.2020.10.026

F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries, Chemical Society Reviews 49 (2020) 1569-1614. https://doi.org/10.1039/C7CS00863E

F. Larouche, F. Tedjar, K. Amouzegar, G. Houlachi, P. Bouchard, G. P. Demopoulos, K. Zaghib Progress and Status of Hydrometallurgical and Direct Recycling of Li-Ion Batteries and Beyond, Materials 13 (2020) 801. https://doi.org/10.3390/ma13030801

F. Belliard, J. T. S. Irvine, Electrochemical performance of ball-milled ZnO-SnO2 systems as anodes in lithium-ion battery, Journal of Power Sources 97 (2001) 219-222. https://doi.org/10.1016/S0378-7753(01)00544-4

G. Yuan, G. Wang, H. Wang, J. Bai, Synthesis and electrochemical investigation of radial ZnO microparticles as anode materials for lithium-ion batteries, Ionics 21 (2015) 365-371. https://doi.org/10.1007/s11581-014-1188-y

V. Aravindan, K. B. Jinesh, R. R. Prabhakar, V. S. Kale, S. Madhavi, Atomic layer deposited (ALD) SnO2 anodes with exceptional cycleability for Li-ion batteries, Nano Energy 2 (2013) 720-725. https://doi.org/10.1016/j.nanoen.2012.12.007

K. Y. K. Yamazaki, K. K. K. Kurihara, T. Y. T. Yamaguchi, Novel proximity effect including pattern-dependent resist development in electron beam nanolithography, Japanese Journal of Applied Physics 36 (1997) 7552. http://doi.org/10.1143/JJAP.36.7552

K. Okuyama, I. W. Lenggoro, Preparation of nanoparticles via spray route, Chemical engineering science 58 (2003) 537-547. https://doi.org/10.1016/S0009-2509(02)00578-X

J. Liu, S. H. He, J. P. Wang, High-yield gas-phase condensation synthesis of nanoparticles to enable a wide array of applications, ACS Applied Nano Materials 3 (2020) 7942-7949. https://doi.org/10.1021/acsanm.0c01400

A. Hassani, M. Karaca, S. Karaca, A. Khataee, O. Açişli, Preparation of magnetite nanoparticles by high-energy planetary ball mill and its application for ciprofloxacin degradation through heterogeneous Fenton process, Journal of environmental management 211 (2018) 53-62. https://doi.org/10.1016/j.jenvman.2018.01.014

S. Kurajica, I. Minga, M. Gulis, V. Mandic, I. Simcic, High surface area ceria nanoparticles via hydrothermal synthesis experiment design, Journal of Nanomaterials (2016) 7274949 1-8. https://doi.org/10.1155/2016/7274949

K. Petcharoen, A. Sirivat, Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method, Materials Science and Engineering: B 177 (2012) 421-427. https://doi.org/10.1016/j.mseb.2012.01.003

V. Pavitra, R. Harini, R. Viswanatha, B. M. Praveen, G. Nagaraju, Sonochemical synthesis of SnO2-CuO nanocomposite: diverse applications on Li-ion battery, electrochemical sensing and photocatalytic activity, Journal of Materials Science: Materials in Electronics 31 (2020) 8737-8749. https://doi.org/10.1007/s10854-020-03408-5

M. Niederberger, Nonaqueous sol-gel routes to metal oxide nanoparticles, Accounts of Chemical Research 40 (2007) 793-800. https://doi.org/10.1021/ar600035e

U. S. Mohanty, Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals, Journal of Applied Electrochemistry 41 (2011) 257-70. https://doi.org/10.1007/s10800-010-0234-3

Y. R. Parauha, V. Sahu, S. J. Dhoble, Prospective of combustion method for preparation of nanomaterials: A challenge, Materials Science and Engineering: B 267 (2021) 115054. https://doi.org/10.1016/j.mseb.2021.115054

F. Yao, D. T. Pham, Y. H. Lee, Carbon‐based materials for lithium‐ion batteries, electrochemical capacitors, and their hybrid devices, ChemSusChem 8 (2015) 2284-2311. https://doi.org/10.1002/cssc.201403490

L. Ma, X. Y. Pei, D. C. Mo, S. S. Lyu, Y. X. Fu, Fabrication of NiO-ZnO/RGO composite as an anode material for lithium-ion batteries, Ceramics International 44 (2018) 22664-22670. https://doi.org/10.1016/j.ceramint.2018.09.044

L. Khandare, D. J. Late, MoO3-rGO nanocomposites for electrochemical energy storage, Applied Surface Science 418 (2017) 2-8. https://doi.org/10.1016/j.apsusc.2016.11.199

H. He, J. Klinowski, M. Forster, A. Lerf, A new structural model for graphite oxide, Chemical physics letters 287 (1998) 53-56. https://doi.org/10.1016/S0009-2614(98)00144-4

A. K. Geim, K. S. Novoselov, The rise of graphene, Nature Materials 6 (2007) 183-191. https://doi.org/10.1038/nmat1849

S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58. https://doi.org/10.1038/354056a0

S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, Individual single-wall carbon nanotubes as quantum wires, Nature 386 (1997) 474-477. https://doi.org/10.1038/386474a0

M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287 (2000) 637-640. http://doi/10.1126/science.287.5453.63

V. A. NebolSin, V. Galstyan, Y. E. Silina, Graphene oxide and its chemical nature: Multi-stage interactions between the oxygen and graphene, Surfaces and Interfaces 21 (2020) 100763. https://doi.org/10.1016/j.surfin.2020.100763

S. William, J. R. Hummers, R. E. Offeman, Preparation of graphitic oxide, Journal of the American Chemical Society 80 (1958) 1339-1339. https://doi.org/10.1021/ja01539a017

M. Fathy, A. Gomaa, F. A Taher, M. M. El-Fass, Optimizing the preparation parameters of GO and rGO for large-scale production, Journal of Materials Science 51 (2016) 5664-5675. https://doi.org/10.1007/s10853-016-9869-8

S. Muralikrishna, B. Kishore, H. Nagabhushana, D. Suresh, S. C. Sharma, and G. Nagaraju. One pot green synthesis of MnCO3-rGO composite hybrid superstructure: application to lithium-ion battery and biosensor, New Journal of Chemistry 41 (2017) 12854-12865. http://doi.org/10.1039/c7nj01781b

D. Suresh, P. C. Nethravathi, H. Nagabhushana, Spinach assisted green reduction of graphene oxide and its antioxidant and dye absorption properties, Ceramics International 41 (2015) 4810-4813. https://doi.org/10.1016/j.ceramint.2014.12.036

J. Shi, X. Jiang, B. Ban, J. Li, J. Chen, Carbon nanotubes-enhanced lithium storage capacity of recovered silicon/carbon anodes produced from solar-grade silicon kerf scrap, Electrochimica Acta 381 (2021) 138269. https://doi.org/10.1016/j.electacta.2021.138269

Y. Zhang, Y. Wei, H. Li, Y. Zhao, F. Yin, X. Wang, Simple fabrication of free-standing ZnO/graphene/carbon nanotube composite anode for lithium-ion batteries, Materials Letters 184 (2016) 235-238. https://doi.org/10.1016/j.matlet.2016.08.017

V. Thirumal, R. Yuvakkumar, P. S. Kumar, G. Ravi, Facile single-step synthesis of MXene@ CNTs hybrid nanocomposite by CVD method to remove hazardous pollutants, Chemosphere 286 (2022) 131733. https://doi.org/10.1016/j.chemosphere.2021.131733

D. Tang, L. Sun, J. Zhou, W. Zhou, S. Xie, Two possible emission mechanisms involved in the arc discharge method of carbon nanotube preparation, Carbon 43 (2005) 2812-2816. https://doi.org/10.1016/j.carbon.2005.05.034

J. Chrzanowska, J. Hoffman, A. Małolepszy, Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength, Physica Status Solidi B 252 (2015) 1860-1867. https://doi.org/10.1002/pssb.201451614

J. S. Chen, Y. L. Cheah, Y. T. Chen, N. Jayaprakash, S. Madhavi, Y. H. Yang, & X. W. Lou, SnO2 Nanoparticles with Controlled Carbon Nanocoating as High-Capacity Anode Materials for Lithium-Ion Batteries, The Journal of Physical Chemistry C 113 (2009) 20504-20508. https://doi.org/10.1021/jp908244m

V. Pavitra, B. M. Praveen, G. Nagaraju, R. Shashanka, Energy Storage, Photocatalytic and Electrochemical Nitrite Sensing of Ultrasound-Assisted Stable Ta2O5 Nanoparticles, Topics in Catalysis (2022) 1-14. https://doi.org/10.1007/s11244-021-01553-7

V. D. Potle, S. R. Shirsath, B. A. Bhanvase, V. K. Saharan, Sonochemical preparation of ternary rGO-ZnO-TiO2 nanocomposite photocatalyst for efficient degradation of crystal violet dye, Optik 208 (2020) 164555. https://doi.org/10.1016/j.ijleo.2020.164555

B. Raj, R. Oraon, A.K. Padhy, Simple and cost-effective sonochemical preparation of ternary NZnO-Mn2O3@rGO nanohybrid: a potential electrode material for supercapacitor and ammonia sensing, Ionics 25 (2019) 3351-3362. https://doi.org/10.1016/j.ijleo.2020.164555

H. Asgar, K.M. Deen, W. Haider, Estimation of electrochemical charge storage capability of ZnO/CuO/reduced graphene oxide nanocomposites, International Journal of Energy Research 44 (2020) 1580-1593. https://doi.org/10.1002/er.4961

T. P. Shende, B. A. Bhanvase, A. P. Rathod, D. V. Pinjari, Sonochemical synthesis of Graphene-Ce-TiO2 and Graphene-Fe-TiO2 ternary hybrid photocatalyst nanocomposite and its application in degradation of crystal violet dye, Ultrasonics sonochemistry 41 (2018) 582-589. https://doi.org/10.1016/j.ultsonch.2017.10.024

Udayabhanu, V. Pavitra, S. C. Sharma, G. Nagaraju, Epigallocatechin gallate (EGCG)-assisted combustion synthesis of V2O5 nanoparticles for Li-ion battery, Ionics 26 (2020) 1203-1210. https://doi.org/10.1007/s11581-019-03326-5

A. Kumar, L. Rout, L.S.K. Achary, S.K. Mohanty, P. Dash, A. combustion synthesis route for magnetically separable graphene oxide-CuFe2O4-ZnO nanocomposites with enhanced solar light-mediated photocatalytic activity, New Journal of Chemistry 41 (2017) 10568-10583. https://doi.org/10.1039/C7NJ02070H

N. K. Rotte, N. Remalli, V. V. S. S. Srikanth, Simple combustion synthesis of MgO and NiO decorated graphenaceous composite, Materials Letters 183 (2016) 251-254. https://doi.org/10.1016/j.matlet.2016.07.112

A. K. Rai, T. V. Thi, J. Gim, J. Kim, Combustion synthesis of MgFe2O4/graphene nano-composite as a high-performance negative electrode for lithium-ion batteries, Materials Characterization 95 (2014) 259-265. https://doi.org/10.1016/j.matchar.2014.06.024

L. Kang, J. Deng, T. Liu, M. Cui, X. Zhang, P. Li, Y. Li, X. Liu, One-step solution combustion synthesis of cobalt-nickel oxides/C/Ni/CNTs nanocomposites as electrochemical capacitors electrode materials, Journal of Power Sources 275 (2015) 126-135. https://doi.org/10.1016/j.jpowsour.2014.10.201

R. Q. Song, A. W. Xu, B. Deng, Y. P. Fang, Novel multilamellar mesostructured molybdenum oxide nanofibers and nanobelts: synthesis and characterization, The Journal of Physical Chemistry B 109 (2005) 22758-22766. https://doi.org/10.1021/jp0533325

S. Wang, Q. Li, W. Pu, Y. Wu, M. Yang, MoO3-MnO2 intergrown nanoparticle composite prepared by one-step hydrothermal synthesis as anode for lithium-ion batteries, Journal of Alloys and Compounds 663 (2016) 148-155. https://doi.org/10.1016/j.jallcom.2015.12.040

S. M. Botsa, G. P. Naidu, M. Ravichandra, S. J. Rani, Flower like SnO2-Fe2O3-rGO ternary composite as highly efficient visible light induced photocatalyst for the degradation of organic pollutants from contaminated water, Journal of Materials Research and Technology 9 (2020) 12461-12472. https://doi.org/10.1016/j.jmrt.2020.08.087

M. Amarnath, A. Heiner, K. Gurunathan, Surface bound nanostructures of ternary r-GO/Mn3O4/V2O5 system for room temperature selectivity of hydrogen gas, Ceramics International 46 (2020) 7336-7345. https://doi.org/10.1016/j.ceramint.2019.11.229

Y. C. Chung, A. Julistian, L. Saravanan, P. R. Chen, B. C. Xu, Hydrothermal synthesis of CuO/RuO2/MWCNT nanocomposites with morphological variants for high efficient supercapacitors, Catalysts 12 (2021) 23. https://doi.org/10.3390/catal12010023

G. S Kumar, S. A. Reddy, H. Maseed, N. R. Reddy, Facile hydrothermal synthesis of ternary CeO2-SnO2/rGO nanocomposite for supercapacitor application, Functional Materials Letters 13 (2020) 2051005. https://doi.org/10.1142/S1793604720510054

W. Wu, Y. Zhao, J. Li, C. Wu, L. Guan, A ternary phased SnO2-Fe2O3/SWCNTs nanocomposite as a high-performance anode material for lithium-ion batteries, Journal of Energy Chemistry 23 (2014) 376-382. https://doi.org/10.1016/S2095-4956(14)60160-1

Y. Huang, X. Chen, K. Zhang, X. Feng, Preparation of graphene supported porous SnO2/NiO ternary composites as high-capacity anode materials for Li-ion batteries, Materials Letters 161 (2015) 631-635. https://doi.org/10.1016/j.matlet.2015.09.074

J. Zhao, W. Shan, X. Xia, Q. Wang, L. Xing, SnO2-CuO/graphene nanocomposites for high performance Li-ion battery anodes, Science China Technological Sciences 57 (2014) 1081-1084. https://doi.org/10.1007/s11431-014-5507-3

X. Ge, Z. Li, C. Wang, L. Yin, Metal-organic frameworks derived porous core/shell structured ZnO/ZnCo2O4/C hybrids as anodes for high-performance lithium-ion battery, ACS Applied Materials & Interfaces 7 (2015) 26633-26642. https://doi.org/10.1021/acsami.5b08195

J. Yao, Y. Gong, S. Yang, P. Xiao, Y. Zhang, K. Keyshar, CoMoO4 nanoparticles anchored on reduced graphene oxide nanocomposites as anodes for long-life lithium-ion batteries, ACS Applied Materials & Interfaces 6 (2014) 20414-20422. https://doi.org/10.1021/am505983m

J. W. Lee, S. D. Seo, D. W. Kim, Hierarchical Zn1.67 Mn1.33O4/graphene nanoaggregates as new anode material for lithium‐ion batteries, International Journal of Energy Research 43 (2019) 1735-1746. https://doi.org/10.1002/er.4381

N. Sebastian, W. C. Yu, Y. C. Hu, D. Balram, Y. H. Yu, Sonochemical synthesis of iron-graphene oxide/honeycomb-like ZnO ternary nanohybrids for sensitive electrochemical detection of antipsychotic drug chlorpromazine, Ultrasonics Sonochemistry 59 (2019) 104696. https://doi.org/10.1016/j.ultsonch.2019.104696

G. Xia, N. Li, D. Li, R. Liu, C. Wang, Q. Li, X. Lu, Graphene/Fe2O3/SnO2 ternary nanocomposites as a high-performance anode for lithium-ion batteries, ACS Applied Materials & Interfaces 5 (2013) 8607-8614. https://doi.org/10.1021/am402124r

M. Parashar, V. K. Shukla, R. Singh - Metal oxides nanoparticles via sol-gel method: a review on synthesis, characterization and applications Journal of Materials Science: Materials 31 (2020) 3729-3749. https://doi.org/10.1007/s10854-020-02994-8

J. H. Yoon, J. S. Kim, Gas sensing properties of nano-crystalline SnO2-CuO compounds, Metals and Materials International 16 (2010) 773-777. https://doi.org/10.1007/s12540-010-1012-9

H. Kose, S. Dombaycıoglu, A. O. Aydın, H. Akbulut, Production and characterization of free-standing ZnO/SnO2/MWCNT ternary nanocomposite Li-ion battery anode, International Journal of Hydrogen Energy 41 (2016) 9924-9932. https://doi.org/10.1016/j.ijhydene.2016.03.202

H. Kose, S. Dombaycıoglu, A. O. Aydn, Graphene‐based architectures of tin and zinc oxide nanocomposites for free‐standing binder‐free Li‐ion anodes. International Journal of Energy Research 42 (2018) 4710-4718. https://doi.org/10.1002/er.4223

P. Tyagi, A. Sharma, M. Tomar, V. Gupta, A comparative study of RGO-SnO2 and MWCNT-SnO2 nanocomposites based SO2 gas sensors, Sensors and Actuators B 248 (2017) 980-986. https://doi.org/10.1016/j.snb.2017.02.147

X. Ding, L. Lyu, F. Wang, Y. Yang, J. Qiao, D. Xu, X. Zhang, Novel ternary Co3O4/CeO2/CNTs composites for high-performance broadband electromagnetic wave absorption, Journal of Alloys and Compounds 864 (2021) 158141. https://doi.org/10.1016/j.jallcom.2020.158141

N. Raghavan, S. Thangavel, G. Venugopal, Enhanced photocatalytic degradation of methylene blue by reduced graphene-oxide/titanium dioxide/zinc oxide ternary nanocomposites, Materials Science in Semiconductor Processing 30 (2015) 321-329. https://doi.org/10.1016/j.mssp.2014.09.019

H. Lv, G. Ji, H. Zhang, Y. Du, Facile synthesis of a CNT@ Fe@SiO2 ternary composite with enhanced microwave absorption performance, RSC Advances 5 (2015) 76836-76843. http://doi.org/10.1039/C5RA11162E

D. Chaudhary, S. Singh, V. D. Vankar, N. Khare, A ternary Ag/TiO2/CNT photoanode for efficient photoelectrochemical water splitting under visible light irradiation, International Journal of Hydrogen Energy 42 (2016) 7826-7835. https://doi.org/10.1016/j.ijhydene.2016.12.036

J. Wang, W. Bao, L. Ma, G. Tan, Y. Su, S. Chen, F. Wu, J. Lu, Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium‐Ion Batteries, ChemSusChem 8 (2015) 4073-4080. https://doi.org/10.1002/cssc.201500674

M. Madian, R. Ummethala, RA.O.A.E. Naga, N. Ismail, M. H. Rümmeli, A. Eychmüller, L. Giebeler, Ternary CNTs@TiO2/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium-Ion Batteries, Materials 10(6) (2017) 678. https://doi.org/10.3390/ma10060678

L. Sun, Q. Deng, Y. Li, L. Deng, Y. Wang, X. Ren, P. Zhang, Solvothermal synthesis of ternary Cu2O-CuO-RGO composites as anode materials for high performance lithium-ion batteries, Electrochimica Acta 222 (2016) 1650-1659. https://doi.org/10.1016/j.electacta.2016.11.155

G. D. Varma, Synthesis of CuO-ZnO/rGO ternary composites for superior NO2 gas sensor at room temperature, Materials Research Express 6 (2018) 035011. http://doi.org/10.1088/2053-1591/aaf34c

K. Chaudhary, N. Shaheen, S. Zulfiqar, M.I. Sarwar, Binary WO3-ZnO nanostructures supported rGO ternary nanocomposite for visible light driven photocatalytic degradation of methylene blue, Synthetic Metals 269 (2020) 116526. https://doi.org/10.1016/j.synthmet.2020.116526

D. A. Reddy, R. Ma, T. K. Kim, Efficient photocatalytic degradation of methylene blue by heterostructured ZnO-RGO/RuO2 nanocomposite under the simulated sunlight irradiation, Ceramics international 41 (2015) 6999-7009. https://doi.org/10.1016/j.ceramint.2015.01.155

Y. Zheng, Z. Liu, B. Liu, S. Wang, C. Xiong, Fabrication of cactus-like CNT/SiO2/MoO3 ternary composites for superior lithium storage, Energy 217 (2021) 119386. https://doi.org/10.1016/j.energy.2020.119386

V. Perez-Luna, M. Cisneros, C. Bittencourt, I. Saucedo-Orozco, M. Quintana, Imaging carbon nanostructures’ reactivity: a complementary strategy to define chemical structure, Royal Society open science 5 (2018) 180605. https://doi.org/10.1098/rsos.180605

F. T. Johra, W. G. Jung, RGO-TiO2-ZnO composites: synthesis, characterization, and application to photocatalysis, Applied Catalysis A 491 (2015) 52-57. https://doi.org/10.1016/j.apcata.2014.11.036

C. Wang, J. Sun, Y. Sun, Z. Tan, X. Xu, Y. Fu, Z. Feng, J. Zhu, Fabrication of cubic Co3O4-hexagonal ZnO disk/rGO as a two-phase benzaldehyde sensor via a sequential nucleation strategy, Sensors and Actuators B 330 (2021) 129384. https://doi.org/10.1016/j.snb.2020.129384

N. Butterfield, P.M. Rowe, E. Stewart, D. Roesel, S. Neshyba, Quantitative three‐dimensional ice roughness from scanning electron microscopy, Journal of Geophysical Research: Atmospheres 122 (2017) 3023-3041. https://doi.org/10.1002/2016JD026094

H. Heidari, W. Van den Broek, S. Bals, Quantitative electron tomography: The effect of the three-dimensional point spread function, Ultramicroscopy 135 (2013) 1-5. https://doi.org/10.1016/j.ultramic.2013.06.005

D. B. Williams, C. B. Carter, Transmission Electron Microscopy: Spectrometry, David B. Williams and C. Barry Cart. IV. Plenum, 1996.

K. T. Nam, D. W. Kim, P. J. Yoo, C. Y. Chiang, N. Meethong, Virus-enabled synthesis and assembly of nanowires for lithium-ion battery electrodes, Science 312 (2006) 885-888. http://doi.org/10.1126/science.112271

W. Shaheen, M. F. Warsi, M. Shahid, M. A. Khan, M. Asghar, Z. Ali, M. Sarfraz, H. Anwar, M. Nadeem, I. Shakir, Carbon coated MoO3 nanowires/ graphene oxide ternary nanocomposite for high-performance supercapacitors, Electrochimica Acta 219 (2016) 330-338. https://doi.org/10.1016/j.electacta.2016.09.069

Y. Li, B. Tan, Y. Wu, Mesoporous Co3O4 nanowire arrays for lithium-ion batteries with high capacity and rate capability, Nano letters 8 (2008) 265-270. https://doi.org/10.1021/nl0725906

C. Rodriguez-Quijada, K. Hamad-Schifferli, Applications of Plasmonic Nanomaterials for Phototriggered Theranostics, In Handbook of Nanomaterials for Cancer Theranostics, Elsevier (2018) 125-142. https://doi.org/10.1016/B978-0-12-813339-2.00005-0

D.K. Denis, X. Sun, J. Zhang, Y. Wang, L. Hou, J. Li, and C. Yuan, Solid solution engineering of Co-Ni-based ternary molybdate nanorods toward hybrid supercapacitors and lithium-ion batteries as high-performance electrodes, ACS Applied Energy Materials 3 (2020) 3955-3965. https://doi.org/10.1021/acsaem.0c00353

J. Guo, L. Chen, X. Zhang, H. Chen, Porous Co3O4 nanorods as anode for lithium-ion battery with excellent electrochemical performance, Journal of Solid State Chemistry 213 (2014) 193-197. https://doi.org/10.1016/j.jssc.2014.02.036

Q. Wang, D. A. Zhang, Q. Wang, J. Sun, L. L. Xing, X. Y. Xue, High electrochemical performances of α-MoO3@MnO2 core-shell nanorods as lithium-ion battery anodes, Electrochimica Acta 146 (2014) 411-418. https://doi.org/10.1016/j.electacta.2014.09.020

L. Zuniga, G. Gonzalez, R. Orrostieta Chavez, J. C. Myers, T. P. Lodge & M. Alcoutlabi Centrifugally Spun α-Fe2O3/TiO2/Carbon Composite Fibers as Anode Materials for Lithium-Ion Batteries, Applied Sciences 9 (2019) 4032. https://doi.org/10.3390/app9194032

X. Jin, T.H. Gu, K. G. Lee, M. J. Kim, M. S. Islam, Unique advantages of 2D inorganic nanosheets in exploring high-performance electrocatalysts: synthesis, application, and perspective, Coordination Chemistry Reviews 415 (2020) 213280. https://doi.org/10.1016/j.ccr.2020.213280

S. Wu, G. Fu, W. Lv, J. Wei, W. Chen, H. Yi, M. Gu, X. Bai, L. Zhu, C. Tan and Y.A. Liang, single‐step hydrothermal route to 3D hierarchical Cu2O/CuO/rGO nanosheets as high‐performance anode of lithium‐ion batteries, Small 14 (2018) 1702667. https://doi.org/10.1002/smll.201702667

Q. Wei, J. Sun, P. Song, Z. Yang, Q. Wang, Synthesis of reduced graphene oxide/SnO2 nanosheets/Au nanoparticles ternary composites with enhanced formaldehyde sensing performance, Physica E 118 (2020) 113953. https://doi.org/10.1016/j.physe.2020.113953

Z. Wang, J. Mu, Y. Li, J. Chen, L. Zhang, D. Li, Preparation and lithium storage properties of NiO-SnO2/graphene nanosheet ternary composites, Journal of Alloys and Compounds 695 (2017) 2909-2915. https://doi.org/10.1016/j.jallcom.2016.11.386

Y. Feng, K. Wu, J. Ke, Z. Guo, X. Deng, C. Bai, Y. Sun, Synthesis of ternary SnO2-MoO3-C composite with nanosheet structure as high-capacity, high-rate and long-lifetime anode for lithium-ion batteries, Ceramics International 47 (2021) 9303-9309. https://doi.org/10.1016/j.ceramint.2020.12.057

R. B. Anjaneyulu, B. S. Mohan, G. P. Naidu, R. Muralikrishna, Visible light enhanced photocatalytic degradation of methylene blue by ternary nanocomposite, MoO3/Fe2O3/rGO. Journal of Asian Ceramic Societies 6 (2018) 183-195. https://doi.org/10.1080/21870764.2018.1479011

H. Xiao, S. Yao, F. Qu, X. Zhang, X. Wu, Electrochemical energy storage performance of heterostructured SnO2@ MnO2 nanoflakes, Ceramics International 43 (2017)1688-1694. https://doi.org/10.1016/j.ceramint.2016.08.064

K. Palanisamy, J. H. Um, M. Jeong, W. S. Yoon, Porous V2O5/RGO/CNT hierarchical architecture as a cathode material: Emphasis on the contribution of surface lithium storage, Scientific Reports 6 (2016) 1-12. https://doi.org/10.1038/srep31275

R. Li, W. Xiao, C. Miao, R. Fang, Z. Wang, M. Zhang, Sphere-like SnO2/TiO2 composites as high-performance anodes for lithium-ion batteries, Ceramics International 45 (2019) 13530-13535. https://doi.org/10.1016/j.ceramint.2019.04.059

M. H. Kim, Y. C. Kang, Electrochemical properties of spherical hollow SnO2-TiO2-C composite powders prepared by spray pyrolysis, International Journal of Electrochemical Science 8 (2013) 3676-3686.

D. Liu, X Wang, X Wang, W. Tian, Y. Bando, D. Golberg, Co3O4 nanocages with highly exposed {110} facets for high-performance lithium storage, Scientific Reports 3 (2013) 1-6. https://doi.org/10.1038/srep02543

B. Wang, X. Y. Lu, K. Y. Wong, Y. Tang, Facile solvothermal synthesis and superior lithium storage capability of Co3O4 nanoflowers with multi-scale dimensions, Materials Chemistry Frontiers 1 (2017) 468-476. http://doi.org/10.1039/C6QM00114A

J. Chen, L. Yang, S. Fang, S. Hirano, K. Tachibana, Synthesis of hierarchical mesoporous nest-like Li4Ti5O12 for high-rate lithium-ion batteries, Journal of Power sources 200 (2012) 59-66. https://doi.org/10.1016/j.jpowsour.2011.10.052

W. W. Lee, J. M. Lee, Novel synthesis of high-performance anode materials for lithium-ion batteries (LIBs), Materials Chemistry A 2 (6) (2014) 1589-626. https://doi.org/10.1039/C3TA12830J

Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Electrochemical energy storage for green grid, Chemical reviews 111 (2011) 3577-3613. https://doi.org/10.1021/cr100290v

F. Zhan, B. Geng, Y. Guo, Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries, Chemistry-A European Journal 15 (2009) 6169-6174. https://doi.org/10.1002/chem.200802561

N.T. Aristote, K. Zou, A. Di, W. Deng, B. Wang, X. Deng, X. Ji, Methods of improving the initial Coulombic efficiency and rate performance of both anode and cathode materials for sodium-ion batteries, Chinese Chemical Letters 33 (2022) 730-742. https://doi.org/10.1016/j.cclet.2021.08.049

J. Zhu, Z. Lu, M. O. Oo, H. H. Hng, J. Ma, H. Zhang, Q. Yan, Synergetic approach to achieve enhanced lithium-ion storage performance in ternary phased SnO2-Fe2O3/rGO composite nanostructures, Journal of Materials Chemistry 21 (2011) 12770-12776. https://doi.org/10.1039/C1JM12447A

Y. Wang, H. Zhang, R. Hu, J. Liu, T. van Ree, H. Wang, L. Yang, and M. Zhu, Fe3O4/SnO2/rGO ternary composite as a high-performance anode material for lithium-ion batteries, Journal of Alloys and Compounds 693 (2017) 1174-1179. https://doi.org/10.1016/j.jallcom.2016.10.082

W. Wu, Y. Zhao, J. Li, C. Wu, L. Guan, A ternary phased SnO2-Fe2O3/SWCNTs nanocomposite as a high-performance anode material for lithium-ion batteries, Journal of Energy Chemistry 23 (2014) 376-382. https://doi.org/10.1016/S2095-4956(14)60160-1

B. N. Joshi, S. An, Y. I. Kim, E.P. Samuel, K. Y. Song, I. W. Seong, S. S. Al-Deyab, M. T. Swihart, W. Y. Yoon and S. S. Yoon, Flexible freestanding Fe2O3-SnOx-carbon nanofiber composites for Li ion battery anodes, Journal of Alloys and Compounds 700 (2017) 259-266. https://doi.org/10.1016/j.jallcom.2017.01.057

H. Kose, S. Dombaycioglu, A. O. Aydin, Production and characterization of free-standing ZnO/SnO2/MWCNT ternary nanocomposite Li-ion battery anode, International Journal of Hydrogen Energy 41 (2016) 9924-9932. https://doi.org/10.1016/j.ijhydene.2016.03.202

Z. Jiao, R. Gao, H. Tao, S. Yuan, L. Xu, S. Xia, H. Zhang, Intergrown SnO2-TiO2@ graphene ternary composite as high-performance lithium-ion battery anodes, Journal of Nanoparticle Research 18 (2016) 1-12. https://doi.org/10.1007/s11051-016-3617-5

S. Li, M. Ling, J. Qiu, J. Han, S. Zhang, Anchoring ultra-fine TiO2-SnO2 solid solution particles onto graphene by one-pot ball-milling for long-life lithium-ion batteries, Journal of Materials Chemistry A 3 (2015) 9700-9706. https://doi.org/10.1039/C5TA01350J

S. Han, J. Jiang, Y. Huang, Y. Tang, J. Cao, D. Wu, X. Feng, Hierarchical TiO2-SnO2-graphene aerogels for enhanced lithium storage, Physical Chemistry Chemical Physics 17 (2015) 1580-1584. https://doi.org/10.1039/C4CP04887C

X. Jiang, X. Yang, Y. Zhu, K. Fan, P. Zhao, C. Li, Designed synthesis of graphene-TiO2-SnO2 ternary nanocomposites as lithium-ion anode materials, New Journal of Chemistry 37 (2013) 3671-3678. https://doi.org/10.1039/C3NJ00797A

Y. Tang, D. Wu, S. Chen, F. Zhang, J. Jia, X Feng, Highly reversible and ultra-fast lithium storage in mesoporous graphene-based TiO2/SnO2 hybrid nanosheets, Energy & Environmental Science 6 (2013) 2447-2451. https://doi.org/10.1039/C3EE40759D

S. Li, M. Ling, J. Qiu, J. Han, S. Zhang, Anchoring ultra-fine TiO2-SnO2 solid solution particles onto graphene by one-pot ball-milling for long-life lithium-ion batteries, Journal of Materials Chemistry A 3 (2015) 9700-9706. http://doi.org/10.1039/c5ta01350j

D. Bao, Q. Tian, Interconnected quasi-nanospheres of SnO2/TiO2/C with gap spaces for improved lithium storage, Materials Letters 229 (2018) 48-52. https://doi.org/10.1016/j.matlet.2018.06.062

V.A. Agubra, L. Zuniga, D. Flores, H. Campos, J. Villarreal, A comparative study on the performance of binary SnO2/NiO/C and Sn/C composite nanofibers as alternative anode materials for lithium-ion batteries, Electrochimica Acta 224 (2017) 608-621. https://doi.org/10.1016/j.electacta.2016.12.054

Y. Sun, Y. Feng, J. Ke, X. Deng, W. Li, Z. Guo, M. He, SnO2-Co3O4-graphite nanosheets with stable structure, high reversible capacity, and long life as anode material for lithium-ion batteries, Ionics 27 (2021) 4167-4175. https://doi.org/10.1007/s11581-021-04192-w

Y. Wang, W. Guo, Y. Yang, Y. Yu, Q. Li, D. Wang, F. Zhang, Rational design of SnO2@C@ MnO2 hierarchical hollow hybrid nanospheres for a Li-ion battery anode with enhanced performances, Electrochimica Acta 262 (2018) 1-8. https://doi.org/10.1016/j.electacta.2017.12.181

W. Li, X. Deng, Y. Feng, D. Xiong, M. He, Synthesis of SnO2@ MnO2@ graphite nanosheet with high reversibility and stable structure as a high-performance anode material for lithium-ion batteries, Ceramics International 47 (2021) 33405-33412. https://doi.org/10.1016/j.ceramint.2021.08.247

J. Zhang, P. Gu, J. Xu, H. Xue, H. Pang, High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium-sulfur batteries, Nanoscale 8 (2016) 18578-18595. https://doi.org/10.1039/C6NR07207K

G. Yuan, G. Wang, H. Wang, J. Bai, Synthesis and electrochemical investigation of radial ZnO microparticles as anode materials for lithium-ion batteries, Ionics 21 (2015) 365-371. https://doi.org/10.1007/s11581-014-1188-y

C. T. Hsieh, C. Y. Lin, Y. F. Chen, J. S. Lin, Synthesis of ZnO@ Graphene composites as anode materials for lithium-ion batteries, Electrochimica Acta 111 (2013) 359-365. https://doi.org/10.1016/j.electacta.2013.07.197

S. Lu, H. Wang, J. Zhou, X. Wu, W. Qin, Atomic layer deposition of ZnO on carbon black as nanostructured anode materials for high-performance lithium-ion batteries, Nanoscale 9 (2017) 1184-1192. https://doi.org/10.1039/C6NR07868K

D. Bresser, F. Mueller, M. Fiedler, S. Krueger, R. Kloepsch, D. Baither, M. Winter, E. Paillard, S. Passerini, Transition-metal-doped zinc oxide nanoparticles as a new lithium-ion anode material, Chemistry of Materials 25 (2013) 4977-4985. https://doi.org/10.1021/cm403443t

Y. Huang, X. Chen, K. Zhang, X. Feng, Preparation of graphene supported flower-like porous 3D ZnO-NiO ternary composites for high-capacity anode materials for Li-ion batteries, Ceramics International 41 (2015) 13532-13540. https://doi.org/10.1016/j.ceramint.2015.07.147

X. He, Y. Hu, R. Chen, Z. Shen, K. Wu, Z. Cheng, P. Pan, Foldable uniform GeOx/ZnO/C composite nanofibers as a high-capacity anode material for flexible lithium ion batteries, Chemical Engineering Journal 360 (2019) 1020-1029. https://doi.org/10.1016/j.cej.2018.10.163

Y. Ma, D. Geiger, U. Kaiser, H. Zhang, G. T. Kim, T. Diemant, R. J. Behm, A. Varzi, S. Passerini, ZnO/ZnFe2O4/N-doped C micro-polyhedrons with hierarchical hollow structure as high-performance anodes for lithium-ion batteries, Nano Energy 42 (2017) 341-352. https://doi.org/10.1016/j.nanoen.2017.11.030

J. Zhao, H. Zhou, M. Jin, P. Chen, S. Chen, X. Liu, ZnO/TiO2/C nanofibers by electrospinning for high-performance lithium storage, Journal of Materials Science 56 (2021) 2497-2505. https://doi.org/10.1007/s10853-020-05363-2

X. Cheng, Y. Li, L. Sang, J. Ma, H. Shi, X. Liu, J. Lu, Boosting the electrochemical performance of MoO3 anode for long-life lithium-ion batteries: Dominated by an ultrathin TiO2 passivation layer, Electrochimica Acta 269 (2018): 241-249. https://doi.org/10.1016/j.electacta.2018.03.009

T. Anwar, L. Wang, L. Jiaoyang, W. Chen, R. U. R. Sagar, L. Tongxiang, Lithium storage study on MoO3-grafted TiO2 nanotube arrays, Applied NanoScience 6 (2016) 1149-1157. https://doi.org/10.1007/s13204-016-0526-y

X. Deng, M. Zhu, J. Ke, W. Li, Y. Feng, D. Xiong, M. He, SnO2-MoO3 nanoparticles anchored in carbon nanotubes as a large-capacity, high-rate, and long-lifetime anode for lithium-ion batteries, Ceramics International 47 (2021) 27022-27031. https://doi.org/10.1016/j.ceramint.2021.06.115

L. Cao, Y. Li, J. Wu, W. Li, J. Huang, Y. Feng, C. Yao, J. Li, Facile synthesis of carbon coated MoO3 nanorods decorated with WO2 nanoparticles as stable anodes for lithium-ion batteries, Journal of Alloys and Compounds 744 (2018) 672-678. https://doi.org/10.1016/j.jallcom.2018.02.112

Y. Teng, H. Liu, D. Liu, Y. Chen, A hierarchically nanostructured composite of MoO3-NiO/graphene for high-performance lithium-ion batteries, Journal of Electrochemical Energy Conversion and Storage 18 (2021) 031003. https://doi.org/10.1115/1.4048492

M. T. McDowell, S. W. Lee, W. D. Nix, Y. Cui, 25th Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batterie s, Advance Materials 25 (2013) 4966-4984. https://doi.org/10.1002/adma.201301795

J. K. Lee, C. Oh, N. Kim, J. Hwang, Y. Sun, Rational design of silicon-based composites for high-energy storage devices, Journal of Materials Chemistry A 4(15) (2016) 5366-5384. http://doi.org/10.1039/C6TA00265J

Z. Gu, W. Li, Y. Chen, X. Xia & H. Liu, Synthesis of the microspherical structure of ternary SiOx@SnO2@C by a hydrothermal method as the anode for high-performance lithium-ion batteries, Sustainable Energy & Fuels 4 (2020) 2333-2341. https://doi.org/10.1039/D0SE00053A

Z. Hu, H. Cui, J. Li, G. Lei & Z. Li, Constructing three-dimensional Li-transport channels within the Fe3O4@SiO2@RGO composite to improve its electrochemical performance in Li-ion batteries, Ceramics International 46 (2020) 18868- 18877. https://doi.org/10.1016/j.ceramint.2020.04.207

F. Tan, H. Guo, Z. Wang, X. Niu, X. Li, G. Yan, Q. Hu, Electrospinning-enabled SiOx@TiO2/C fibers as anode materials for lithium-ion batteries, Journal of Alloys and Compounds 888 (2021) 161635. https://doi.org/10.1016/j.ceramint.2020.04.207

Y. Jiang, S. Chen, D. Mu, Z. Zhao, C. Li, Z. Din, F. Wu, Flexible TiO2 /SiO2 /C Film Anodes for Lithium-Ion Batteries, ChemSusChem 11 (2018) 2040-2044. https://doi.org/10.1002/cssc.201800560

J. Y. Liao, D. Higgins, G. Lui, V. Chabot, X. Xiao, Z. Chen, Multifunctional TiO2-C/MnO2 core-double-shell nanowire arrays as high-performance 3D electrodes for lithium-ion batteries, Nano letters 13 (2013) 5467-5473. https://doi.org/10.1021/nl4030159

V. Etacheri, C. N. Hong, J. Tang, V. G. Pol, Cobalt nanoparticles chemically bonded to porous carbon nanosheets: a stable high-capacity anode for fast-charging lithium-ion batteries, ACS applied materials & interfaces 10 (2018) 4652-4661. https://doi.org/10.1021/acsami.7b15915

Y. Lu, J. Tu, C. Gu, X. Wang, S. X. Mao, In situ growth and electrochemical characterization versus lithium of a core/shell-structured Ni2P@C nanocomposite synthesized by a facile organic-phase strategy, Journal of Materials Chemistry 21 (2011) 17988-17997. https://doi.org/10.1039/C1JM13171K

L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries, Energy & Environmental Science 4 (2011) 2682-2699. https://doi.org/10.1039/C0EE00699H

L. Zuniga, V. Agubra, D. Flores, H. Campos, J. Villareal, Multichannel hollow structure for improved electrochemical performance of TiO2/Carbon composite nanofibers as anodes for lithium-ion batteries, Journal of Alloys and Compounds 686 (2016) 733-743. https://doi.org/10.1016/j.jallcom.2016.06.089

C. Wang, Q. Li, F. Wang, G. Xia, R. Liu, D. Li, N. Li, Morphology-dependent performance of CuO anodes via facile and controllable synthesis for lithium-ion batteries, ACS Applied Materials & Interfaces 6 (2014) 1243-1250. https://doi.org/10.1021/am405061c

L. Zuniga, G. Gonzalez, R. Orrostieta Chavez, J. C. Myers, Centrifugally spun α-Fe2O3/TiO2/carbon composite fibers as anode materials for lithium-ion batteries, Applied Sciences 9 (2019) 4032. https://doi.org/10.3390/app9194032

K. Kaprans, J. Mateuss, A. Dorondo, G. Bajars, Electrophoretically deposited α-Fe2O3 and TiO2 composite anchored on rGO with excellent cycle performance as anode for lithium-ion batteries, Solid State Ionics 319 (2018) 1-6. https://doi.org/10.1016/j.ssi.2018.01.042

F. Wang, H. Yuan, J. Huang, A bio-inspired nanofibrous Co3O4/TiO2/carbon composite as high-performance anodic material for lithium-ion batteries, Journal of Alloys and Compounds 819 (2020) 153375. https://doi.org/10.1016/j.jallcom.2019.153375

H. Zhang, Y.F. Wang, W. L. Liu, F. G. Kong, M. M. Ren, Designed synthesis of CoO/CuO/rGO ternary nanocomposites as high-performance anodes for lithium-ion batteries, Jom 70 (2018) 1793-1799. https://doi.org/10.1007/s11837-018-2801-8

J. B. Wu, R. Q. Guo, X. H. Huang, Y. Lin, Ternary core/shell structure of Co3O4/NiO/C nanowire arrays as high-performance anode material for Li-ion battery, Journal of Power Sources, 248 (2014) 115-121. https://doi.org/10.1016/j.jpowsour.2013.09.040

S. Balamurugan, N. Naresh, I, Prakash, N. Satyanarayana, Capacity fading mechanism of Li2O loaded NiFe2O4/SiO2 aerogel anode for Lithium-ion battery: Ex-situ XPS analysis, Applied Surface Science 535 (2020) 147677. https://doi.org/10.1016/j.apsusc.2020.147677

B. Ziv, V. Borgel, D. Aurbach, J. -H. Kim, X. Xiao & B. R. Powell, Investigation of the Reasons for Capacity Fading in Li-Ion Battery Cells, Journal of The Electrochemical Society 161 (2014) A1672-A1680. http://doi.org/10.1149/2.0731410jes

H. -R. Kim, S. -G. Woo, J. -H. Kim, W. Cho & Y. -J. Kim Capacity fading behaviour of Ni-rich layered cathode materials in Li-ion full cells, Journal of Electroanalytical Chemistry 782 (2016) 168-173. https://doi.org/10.1016/j.jelechem.2016.10.032

Downloads

Published

08-12-2022 — Updated on 08-12-2022

How to Cite

Pavitra, V. ., Soni, I. ., Praveen, B. M. ., & Nagaraju , G. (2022). Brief review on carbon derivatives based ternary metal oxide composite electrode materials for lithium-ion batteries: Review paper. Journal of Electrochemical Science and Engineering, 13(4), 605–640. https://doi.org/10.5599/jese.1470

Issue

Section

Batteries and supercapcitors