Applications of biopolymer coatings in biomedical engineering
Review paper
DOI:
https://doi.org/10.5599/jese.1460Keywords:
Coatings methods, biomedical implants, tissue engineeringAbstract
In this paper, a comprehensive overview of recent developments in the many different types of biopolymer coatings used in biomedical applications is presented. Biopolymer coatings have tremendous promise in various biological applications due to their adaptability. Polymer coatings may be used to improve surface qualities to fulfill certain criteria or to include extra capabilities for various biomedical applications. This analysis focuses mostly on certain polymers for usage in coating applications as well as a variety of polymer coatings that provide enhanced functionalization. The most recent findings from relevant research have been presented on using polymer coatings on nanoparticles for biological applications. Moreover, the latest research on biopolymer coatings for improved tissue engineering and drug delivery on various substrates and nanoparticles has been reported. Additionally, the most recent scientific breakthroughs have been compiled.
Downloads
References
M. J. Landry, F. G. Rollet, T. E. Kennedy, C. J. Barrett, Layers and Multilayers of Self-Assembled Polymers: Tunable Engineered Extracellular Matrix Coatings for Neural Cell Growth, Langmuir 34 (2018) 8709-8730. https://doi.org/10.1021/acs.langmuir.7b04108
S. Park, U. Han, D. Choi, J. Hong, Layer-by-layer assembled polymeric thin films as prospective drug delivery carriers: Design and applications, : Biomaterials Research 22 (2018) 1-13. https://doi.org/10.1186/s40824-018-0139-5
P. Singh, A. Bansal, H. Vasudev, In situ surface modification of stainless steel with hydroxyapatite using microwave heating, Surface Topography: Metrology and Properties 9 (2021) 035053. https://doi.org/10.1088/2051-672X/ac28a9
G. Prashar, H. Vasudev, Influence of Heat Treatment on Surface Properties of HVOF Deposited WC and Ni-Based Powder Coatings : A Review, Surface Topography: Metrology and Properties 9 (2021) 043002. https://doi.org/10.1088/2051-672X/ac3a52
H. Vasudev, G. Prashar, L. Thakur, A. Bansal, Microstructural characterization and electrochemical corrosion behaviour of HVOF sprayed Alloy718-nanoAl2O3 composite coatings, Surface Topography: Metrology and Properties 9 (2021) 035003. https://doi.org/10.1088/2051-672X/ac1044
G. Prashar, H. Vasudev, Parameters and Heat Treatment on the Corrosion Performance of Ni-Based, Surface Review and Letters 29 (2022) 2230001. https://doi.org/10.1142/S0218625X22300015
G. Prashar, H. Vasudev, L. Thakur, High-Temperature Oxidation and Erosion Resistance of Ni-Based Thermally-Sprayed Coatings Used in Power Generation Machinery : A Review, Surface Review and Letters 29 (2022) 2230003. https://doi.org/10.1142/S0218625X22300039
H. Vasudev, G. Prashar, L. Thakur, A. Bansal, Electrochemical Corrosion Behavior and Microstructural Characterization of HVOF, Surface Review and Letters 29 (2022) 2250017. https://doi.org/10.1142/S0218625X22500172
R. Rajput, J. Narkhede, J. B. Naik, Nanogels as nanocarriers for drug delivery: A review, ADMET and DMPK 8 (2020) 1-15. https://doi.org/10.5599/admet.724
G. Singh, H. Vasudev, A. Bansal, Influence of heat treatment on the microstructure and corrosion properties of the Inconel-625 clad deposited by microwave heating Influence of heat treatment on the microstructure and corrosion properties of the Inconel-625 clad deposited by microwave h, Surface Topography: Metrology and Properties 9 (2021) 025019. https://doi.org/10.1088/2051-672X/abfc61
J. Singh, S. Singh, J. P. Singh, Investigation on wall thickness reduction of hydropower pipeline underwent to erosion-corrosion process, Engineering Failure Analysis 127 (2021) 105504. https://doi.org/10.1016/j.engfailanal.2021.105504
S.C.N.B. Composite, V. Dutta, L. Thakur, B. Singh, H. Vasudev, A Study of Erosion - Corrosion Behaviour of Friction, Materials 15 (2022) 5401. https://doi.org/10.3390/ma15155401
G. Singh, H. Vasudev, A. Bansal, S. Vardhan, S. Sharma, Microwave cladding of Inconel-625 on mild steel substrate for corrosion protection, Materials Research Express 7 (2020) 026512. https://doi.org/10.1088/2053-1591/ab6fa3
J. Singh, S. Singh, Neural network supported study on erosive wear performance analysis of Y2O3/WC-10Co4Cr HVOF coating, Journal of King Saud University-Engineering Sciences (2022) https://doi.org/10.1016/j.jksues.2021.12.005
J. Singh, J.P. Singh, Performance analysis of erosion resistant Mo2C reinforced WC-CoCr coating for pump impeller with Taguchi’s method: Industrial Lubrication and Tribology 74 (2022) 431-441. https://doi.org/10.1108/ILT-05-2020-0155
J. Singh, Wear performance analysis and characterization of HVOF deposited Ni-20Cr2O3, Ni-30Al2O3, and Al2O3-13TiO2 coatings, Applied Surface Science Advances 6 (2021) 100161. https://doi.org/10.1016/j.apsadv.2021.100161
J. Singh, Slurry erosion performance analysis and characterization of high-velocity oxy-fuel sprayed Ni and Co hardsurfacing alloy coatings, Journal of King Saud University-Engineering Science (2021) https://doi.org/10.1016/j.jksues.2021.06.009
J. Singh, Tribo-performance analysis of HVOF sprayed 86WC-10Co4Cr & Ni-Cr2O3 on AISI 316L steel using DOE-ANN methodology, Industrial Lubrication and Tribology 73 (2021) 727-735. https://doi.org/10.1108/ILT-04-2020-0147
J. Singh, A review on mechanisms and testing of wear in slurry pumps, pipeline circuits and hydraulic turbines Journal of Tribology 143 (2021) 090801. https://doi.org/10.1115/1.4050977
H. Vasudev, L. Thakur, H. Singh, A. Bansal, Erosion behaviour of HVOF sprayed Alloy718-nano Al2O3 composite coatings on grey cast iron at elevated temperature conditions, Surface Topo¬graphy: Metrology and Properties 9 (2021) 035022. https://doi.org/10.1088/2051-672X/ac1c80
R. N. Oosterbeek, C. K. Seal, J. M. Seitz, M. M. Hyland, Polymer-bioceramic composite coatings on magnesium for biomaterial applications, Surface and Coatings Technology 236 (2013) 420-428. https://doi.org/10.1016/j.surfcoat.2013.10.029
M. Singh, H. Vasudev, R. Kumar, Corrosion and tribological behaviour of bn thin films depo-sited using magnetron sputtering, International Journal of Surface Engineering and Inter-disciplinary Materials Science 9 (2021) 24-39. https://doi.org/10.4018/IJSEIMS.2021070102
A. S. H. Makhlouf, A. Perez, E. Guerrero, Recent trends in smart polymeric coatings in biomedicine and drug delivery applications, in: Advances in Smart Coatings and Thin Films for Future Industrial and Biomedical Engineering Applications, Elsevier Inc., Amsterdam, The Netherlands, 2019, pp. 359-381. https://doi.org/10.1016/B978-0-12-849870-5.00019-7
Y. Li, C. Liao, S.C. Tjong, Electrospun polyvinylidene fluoride-based fibrous scaffolds with piezoelectric characteristics for bone and neural tissue engineering, Nanomaterials 9 (2019) 952. https://doi.org/10.3390/nano9070952
A. H. Rajabi, M. Jaffe, T. L. Arinzeh, Piezoelectric materials for tissue regeneration, Acta Biomaterialia 24 (2015) 12-23. https://doi.org/10.1016/j.actbio.2015.07.010
C. Ribeiro, V. Sencadas, D.M. Correia, S. Lanceros-Méndez, Piezoelectric polymers as biomaterials for tissue engineering applications, Colloids Surfaces B 136 (2015) 46-55. https://doi.org/10.1016/j.colsurfb.2015.08.043
J. Nunes-Pereira, S. Ribeiro, C. Ribeiro, C. J. Gombek, F. M. Gama, A. C. Gomes, D. A. Patterson, S. Lanceros-Méndez, Poly(vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications, Polymer Testing 44 (2015) 234-241. https://doi.org/10.1016/j.polymertesting.2015.05.001
B. Azimi, M. S. Bafqi, A. Fusco, C. Ricci, G. Gallone, R. Bagherzadeh, G. Donnarumma, M.J. Uddin, M. Latifi, A. Lazzeri, S. Danti, Electrospun ZnO/Poly(Vinylidene fluoride-trifluoro-ethylene) scaffolds for lung tissue engineering, Tissue Engineering A 26 (2020) 1312-1331. https://doi.org/10.1089/ten.tea.2020.0172
F. A. Sheikh, M. A. Beigh, A. S. Qadir, S. H. Qureshi, H. Kim, Hydrophilically modified poly(vinylidene fluoride) nanofibers incorporating cellulose acetate fabricated by colloidal electrospinning for future tissue-regeneration applications, Polymer Composites 40 (2019) 1619-1630. https://doi.org/10.1002/pc.24910
D. B. Gehlen, L. C. De Lencastre Novaes, W. Long, A. J. Ruff, F. Jakob, T. Haraszti, Y. Chandorkar, L. Yang, P. Van Rijn, U. Schwaneberg, L. De Laporte, Rapid and Robust Coating Method to Render Polydimethylsiloxane Surfaces Cell-Adhesive, ACS Applied Material Interfaces 11 (2019) 41091-41099. https://doi.org/10.1021/acsami.9b16025
H. Zhang, M. Chiao, Antifouling coatings of poly(dimethylsiloxane) devices for biological and biomedical applications, Journal of Medical and Biological Engineering 35 (2015) 143-155. https://doi.org/10.1007/s40846-015-0029-4
H. Scheidbach, C. Tamme, A. Tannapfel, H. Lippert, F. Köckerling, In vivo studies comparing the biocompatibility of various polypropylene meshes and their handling properties during endoscopic total extraperitoneal (TEP) patchplasty: An experimental study in pigs, Surgical Endoscopy And Other Interventional Techniques 18 (2004) 211-220. https://doi.org/10.1007/s00464-003-8113-1
M. Reggente, M. Natali, D. Passeri, M. Lucci, I. Davoli, G. Pourroy, P. Masson, H. Palkowski, U. Hangen, A. Carradò, M. Rossi, Multiscale mechanical characterization of hybrid Ti/PMMA layered materials, Colloids Surfaces A 532 (2017) 244-251. https://doi.org/10.1016/j.colsurfa.2017.05.011
S. Liu, C. Chen, L. Chen, H. Zhu, C. Zhang, Y. Wang, Pseudopeptide polymer coating for improving biocompatibility and corrosion resistance of 316L stainless steel, RSC Advances 5 (2015) 98456-98466. https://doi.org/10.1039/c5ra17802a
S. V. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, V. S. Egorkin, M. V. Sidorova, A. S. Gnedenkov, Composite polymer-containing protective coatings on magnesium alloy MA8, Corrosion Science 85 (2014) 52-59. https://doi.org/10.1016/j.corsci.2014.03.035
S. V. Gnedenkov, S. L. Sinebryukhov, A. G. Zavidnaya, V. S. Egorkin, A. V. Puz’, D. V. Mashtalyar, V. I. Sergienko, A. L. Yerokhin, A. Matthews, Composite hydroxyapatite-PTFE coatings on Mg-Mn-Ce alloy for resorbable implant applications via a plasma electrolytic oxidation-based route, Journal of the Taiwan Institute of Chemical Engineers 45 (2014) 3104-3109. https://doi.org/10.1016/j.jtice.2014.03.022
Y. Guo, Y. Su, R. Gu, Z. Zhang, G. Li, J. Lian, L. Ren, Enhanced corrosion resistance and biocompatibility of biodegradable magnesium alloy modified by calcium phosphate/collagen coating, Surface and Coatings Technology 401 (2020) 126318. https://doi.org/10.1016/j.surfcoat.2020.126318
E. Leontidis, Langmuir - Blodgett Films : Sensor and Biomedical Applications and Comparisons with the Layer-by-Layer Method, in Surface Treatments for Biological, Chemical, and Physical Applications, M. Gursoy, M. Karaman (Eds.), Wiley-VCH, Weinheim, Germany, 2017, pp. 181-207. https://doi.org/10.1002/9783527698813.ch5
S.A. Hussain, B. Dey, D. Bhattacharjee, N. Mehta, Unique supramolecular assembly through Langmuir - Blodgett (LB) technique, Heliyon 4 (2018) e01038. https://doi.org/10.1016/j.heliyon.2018.e01038
W. Kim, J. Jung, Polymer brush: A promising grafting approach to scaffolds for tissue engineering, BMB Reports 49 (2016) 655-661. https://doi.org/10.5483/BMBRep.2016.49.12.166
M. Krishnamoorthy, S. Hakobyan, M. Ramstedt, J.E. Gautrot, Surface-initiated polymer brushes in the biomedical field: Applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings, Chemical Reviews 114 (2014) 10976-11026. https://doi.org/10.1021/cr500252u
S. Ma, X. Zhang, B. Yu, F. Zhou, Brushing up functional materials, NPG Asia Materials 11 (2019) 1-39. https://doi.org/10.1038/s41427-019-0121-2
F. Khelifa, S. Ershov, Y. Habibi, R. Snyders, P. Dubois, Free-Radical-Induced Grafting from Plasma Polymer Surfaces, Chemical Reviews 116 (2016) 3975-4005. https://doi.org/10.1021/acs.chemrev.5b00634
J. Song, B. Winkeljann, O. Lieleg, Biopolymer-Based Coatings: Promising Strategies to Improve the Biocompatibility and Functionality of Materials Used in Biomedical Engineering, Advanced Materials Interfaces 7 (2020) 2000850. https://doi.org/10.1002/admi.202000850
B. R. Barrioni, S. M. De Carvalho, R. L. Oréfice, A. A. R. De Oliveira, M. D. M. Pereira, Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications, Materials Science and Engineering: C 52 (2015) 22-30. https://doi.org/10.1016/j.msec.2015.03.027
F. J. Davis, G. R. Mitchell, Polyurethane based materials with applications in medical devices, in: Bio-Materials and Prototyping Applications in Medicine, Springer, Boston, MA, 2008, pp. 27-48. https://doi.org/10.1007/978-0-387-47683-4_3
L. Tatai, T. G. Moore, R. Adhikari, F. Malherbe, R. Jayasekara, I. Griffiths, P. A. Gunatillake, Thermoplastic biodegradable polyurethanes: The effect of chain extender structure on properties and in-vitro degradation, Biomaterials 28 (2007) 5407-5417. https://doi.org/10.1016/j.biomaterials.2007.08.035
S. A. Guelcher, K. M. Gallagher, J. E. Didier, D. B. Klinedinst, J. S. Doctor, A. S. Goldstein, G. L. Wilkes, E. J. Beckman, J. O. Hollinger, Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders, Acta Biomaterialia 1 (2005) 471-484. https://doi.org/10.1016/j.actbio.2005.02.007
G. R. da Silva, A. da Silva-Cunha, F. Behar-Cohen, E. Ayres, R.L. Oréfice, Biodegradation of poly¬urethanes and nanocomposites to non-cytotoxic degradation products, Polymer Degra-dation and Stability 95 (2010) 491-499. https://doi.org/10.1016/j.polymdegradstab.2010.01.001
N. Roohpour, J. M. Wasikiewicz, A. Moshaverinia, D. Paul, M. F. Grahn, I. U. Rehman, P. Vadgama, Polyurethane membranes modified with isopropyl myristate as a potential candidate for encapsulating electronic implants: A study of biocompatibility and water permeability, Polymers 2 (2010) 102-119. https://doi.org/10.3390/polym2030102
N. Roohpour, A. Moshaverinia, J. M. Wasikiewicz, D. Paul, M. Wilks, M. Millar, P. Vadgama, Development of bacterially resistant polyurethane for coating medical devices, Biomedical Materials 7 (2012). https://doi.org/10.1088/1748-6041/7/1/015007
S. Wendels, L. Avérous, Biobased polyurethanes for biomedical applications, Biomedical Materials 6 (2021) 1083-1106. https://doi.org/10.1016/j.bioactmat.2020.10.002
S. Bahrami, A. Solouk, H. Mirzadeh, A. M. Seifalian, Electroconductive polyurethane/graphene nanocomposite for biomedical applications, Composites B 168 (2019) 421-431. https://doi.org/10.1016/j.compositesb.2019.03.044
C. Wang, Z. Yi, Y. Sheng, L. Tian, L. Qin, T. Ngai, W. Lin, Development of a novel biodegra-dable and antibacterial polyurethane coating for biomedical magnesium rods, Materials Science and Engineering C 99 (2019) 344-356. https://doi.org/10.1016/j.msec.2019.01.119
F. Zou, Y. Wang, Y. Zheng, Y. Xie, H. Zhang, J. Chen, M. I. Hussain, H. Meng, J. Peng, A novel bioactive polyurethane with controlled degradation and L-Arg release used as strong adhesive tissue patch for hemostasis and promoting wound healing, Bioactive Materials 17 (2022) 471-487. https://doi.org/10.1016/j.bioactmat.2022.01.009
U. Klinge, B. Klosterhalfen, A. P. Öttinger, K. Junge, V. Schumpelick, PVDF as a new polymer for the construction of surgical meshes, Biomaterials 23 (2002) 3487-3493. https://doi.org/10.1016/S0142-9612(02)00070-4
Y. Y. Chiu, W. Y. Lin, H. Y. Wang, S. Bin Huang, M. H. Wu, Development of a piezoelectric polyvinylidene fluoride (PVDF) polymer-based sensor patch for simultaneous heartbeat and respiration monitoring, Sensors Actuators A. 189 (2013) 328-334. https://doi.org/10.1016/j.sna.2012.10.021
K. Y. Shin, J. S. Lee, J. Jang, Highly sensitive, wearable and wireless pressure sensor using free-standing ZnO nanoneedle/PVDF hybrid thin film for heart rate monitoring, Nano Energy 22 (2016) 95-104. https://doi.org/10.1016/j.nanoen.2016.02.012
Y. Yu, H. Sun, H. Orbay, F. Chen, C. G. England, W. Cai, X. Wang, Biocompatibility and in vivo operation of implantable mesoporous PVDF-based nanogenerators, Nano Energy 27 (2016) 275-281. https://doi.org/10.1016/j.nanoen.2016.07.015
S. Khadtare, E. J. Ko, Y. H. Kim, H. S. Lee, D. K. Moon, A flexible piezoelectric nanogenerator using conducting polymer and silver nanowire hybrid electrodes for its application in real-time muscular monitoring system, Sensors Actuators A 299 (2019) 111575. https://doi.org/10.1016/j.sna.2019.111575
N. T. Tien, S. Jeon, D. Il Kim, T.Q. Trung, M. Jang, B. U. Hwang, K. E. Byun, J. Bae, E. Lee, J. B. H. Tok, Z. Bao, N. E. Lee, J. J. Park, A flexible bimodal sensor array for simultaneous sensing of pressure and temperature, Advanced Materials 26 (2014) 796-804. https://doi.org/10.1002/adma.201302869
X. Han, X. Chen, X. Tang, Y. L. Chen, J. H. Liu, Q. D. Shen, Flexible Polymer Transducers for Dynamic Recognizing Physiological Signals, Advanced Functional Materials 26 (2016) 3640-3648. https://doi.org/10.1002/adfm.201600008
M. Tavakolmoghadam, T. Mohammadi, Application of Colloidal Precipitation Method Using Sodium Polymethacrylate as Dispersant for TiO2/PVDF Membrane Preparation and Its Antifouling Properties, Polymer Engineering & Science 59 (2019) 422-434. https://doi.org/10.1002/pen.25009
F. Chen, X. Ding, Y. Jiang, Y. Guan, D. Wei, A. Zheng, X. Xu, Permanent Antimicrobial Poly(vinylidene fluoride) Prepared by Chemical Bonding with Poly(hexamethylene guanidine), ACS Omega 5 (2020) 10481-10488. https://doi.org/10.1021/acsomega.0c00626
X. Shen, P. Liu, S. Xia, J. Liu, R. Wang, H. Zhao, Q. Liu, J. Xu, F. Wang, Anti-fouling and antibacterial modification of poly(vinylidene fluoride) membrane by blending with the capsaicin-based copolymer, Polymers 11 (2019) 323. https://doi.org/10.3390/polym11020323
E. Koh, Y. T. Lee, Antimicrobial activity and fouling resistance of a polyvinylidene fluoride (PVDF) hollow-fiber membrane, Journal of Industrial and Engineering Chemistry 47 (2017) 260-271. https://doi.org/10.1016/j.jiec.2016.11.042
X. Shen, Y. Zhao, L. Chen, Polycation-grafted poly(vinylidene fluoride) membrane with biofouling resistance, Chemical Engineering & Technology 38 (2015) 859-866. https://doi.org/10.1002/ceat.201400582
K. Rajavel, S. Shen, T. Ke, D. Lin, Achieving high bactericidal and antibiofouling activities of 2D titanium carbide (Ti3C2Tx) by delamination and intercalation, 2D Materials 6 (2019) 035040. https://doi.org/10.1088/2053-1583/ab23ce
Z. Yin, B. Tian, Q. Zhu, C. Duan, Characterization and application of PVDF and its copolymer films prepared by spin-coating and langmuir-blodgett method, Polymers 11 (2019) 2033. https://doi.org/10.3390/polym11122033
T. Q. Trung, S. Ramasundaram, S. W. Hong, N. E. Lee, Flexible and transparent nanocomposite of reduced graphene oxide and P(VDF-TrFE) copolymer for high thermal responsivity in a field-effect transistor, Advanced Functional Materials 24 (2014) 3438-3445. https://doi.org/10.1002/adfm.201304224
K. Maity, S. Garain, K. Henkel, D. Schmeißer, D. Mandal, Self-Powered Human-Health Monitoring through Aligned PVDF Nanofibers Interfaced Skin-Interactive Piezoelectric Sensor, ACS Applied Polymer Materials 2 (2020) 862-878. https://doi.org/10.1021/acsapm.9b00846
P. Aliahmadipoor, D. Ghazanfari, R. J. Gohari, M. R. Akhgar, Preparation of PVDF/FMBO composite electrospun nanofiber for effective arsenate removal from water, RSC Advances 10 (2020) 24653-24662. https://doi.org/10.1039/d0ra02723e
E. Elnabawy, A. H. Hassanain, N. Shehata, A. Popelka, R. Nair, S. Yousef, I. Kandas, Piezoelastic PVDF/TPU nanofibrous composite membrane: Fabrication and characterization, Polymers 11 (2019) 762. https://doi.org/10.3390/polym11101634
M. S. S. Bafqi, R. Bagherzadeh, M. Latifi, Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency, Journal of Polymer Research 22 (2015) 1-9. https://doi.org/10.1007/s10965-015-0765-8
X. Hu, X. Yan, L. Gong, F. Wang, Y. Xu, L. Feng, D. Zhang, Y. Jiang, Improved Piezoelectric Sensing Performance of P(VDF-TrFE) Nanofibers by Utilizing BTO Nanoparticles and Penetrated Electrodes, ACS Applied Materials Interfaces 11 (2019) 7379-7386. https://doi.org/10.1021/acsami.8b19824
X. Saitaer, N. Sanbhal, Y. Qiao, Y. Li, J. Gao, G. Brochu, R. Guidoin, A. Khatri, L. Wang, Polydopamine-inspired surface modification of polypropylene hernia mesh devices via cold oxygen plasma: Antibacterial and drug release properties, Coatings 9 (2019) 164. https://doi.org/10.3390/coatings9030164
A. J. T. Teo, A. Mishra, I. Park, Y. J. Kim, W. T. Park, Y. J. Yoon, Polymeric Biomaterials for Medical Implants and Devices, ACS Biomaterials Science & Engineering 2 (2016) 454-472. https://doi.org/10.1021/acsbiomaterials.5b00429
H. P. Steinmetz, E. Sason, T. Lublin-Tennenbaum, S. Margel, Engineering of new durable cross-linked poly(styryl bisphosphonate) thin coatings onto polypropylene films for biomedical applications, Applied Surface Science 508 (2020) 145171. https://doi.org/10.1016/j.apsusc.2019.145171
K. Cai, Y. Jiao, Q. Quan, Y. Hao, J. Liu, L. Wu, Improved activity of MC3T3-E1 cells by the exciting piezoelectric BaTiO3/TC4 using low-intensity pulsed ultrasound, Journal of Polymer Research 6 (2021) 4073-4082. https://doi.org/10.1016/j.bioactmat.2021.04.016
R. Vargas, L. Medina, A. Egurbide-Sifre, Organ-on-a-Chip systems for new drugs development, ADMET and DMPK 9 (2021) 111-141. https://doi.org/10.5599/admet.942
D. Sharma, W. Jia, F. Long, S. Pati, Q. Chen, Y. Qyang, B. Lee, C. K. Choi, F. Zhao, Polydopamine and collagen coated micro-grated polydimethylsiloxane for human mesenchymal stem cell culture, Bioactive Materials 4 (2019) 142-150. https://doi.org/10.1016/j.bioactmat.2019.02.002
Z. Sun, J. Wen, W. Wang, H. Fan, Y. Chen, J. Yan, J. Xiang, Polyurethane covalently modified polydimethylsiloxane (PDMS) coating with increased surface energy and re-coatability, Prog-ress in Organic Coatings 146 (2020) 105744. https://doi.org/10.1016/j.porgcoat.2020.105744
P. Xue, Q. Li, Y. Li, L. Sun, L. Zhang, Z. Xu, Y. Kang, Surface modification of poly(dimethylsiloxane) with polydopamine and hyaluronic acid to enhance hemocompatibility for potential applications in medical implants or devices, ACS Applied Matererials Interfaces 9 (2017) 33632-33644. https://doi.org/10.1021/acsami.7b10260
M. Saboktakin, Medical Applications of Poly Methyl Methacrylate Nanocomposites, JSMC Nanotechnol. Nanomedicine 3 (2019) 1-7. https://www.jsmcentral.org/Nanotechnology/jsmcnn465321.pdf
R. S. Jessy, M. H. Ibrahim, Biodegradability and Biocompatibility of Polymers with Emphasis on Bone Scaffolding : a Brief Review, International Journal of Scientific and Research Publications 4 (2014) 7-9. https://www.ijsrp.org/research-paper-0714/ijsrp-p31105.pdf
M. Reggente, P. Masson, C. Dollinger, H. Palkowski, S. Zafeiratos, L. Jacomine, D. Passeri, M. Rossi, N.E. Vrana, G. Pourroy, A. Carradò, Novel Alkali Activation of Titanium Substrates to Grow Thick and Covalently Bound PMMA Layers, ACS Applied Matererials Interfaces 10 (2018) 5967-5977. https://doi.org/10.1021/acsami.7b17008
P. Dimitrakellis, G. D. Kaprou, G. Papavieros, D. C. Mastellos, V. Constantoudis, A. Tserepi, E. Gogolides, Enhanced antibacterial activity of ZnO-PMMA nanocomposites by selective plasma etching in atmospheric pressure, Micro and Nano Engineering 13 (2021) 100098. https://doi.org/10.1016/j.mne.2021.100098
H. M. Mousa, A. Abdal-Hay, M. Bartnikowski, I. M. A. Mohamed, A. S. Yasin, S. Ivanovski, C. H. Park, C. S. Kim, A Multifunctional Zinc Oxide/Poly(Lactic Acid) Nanocomposite Layer Coated on Magnesium Alloys for Controlled Degradation and Antibacterial Function, ACS Biomaterials Science & Engineering 4 (2018) 2169-2180. https://doi.org/10.1021/acsbiomaterials.8b00277
Y. Zykova, V. Kudryavtseva, M. Gai, A. Kozelskaya, J. Frueh, G. Sukhorukov, S. Tverdokhlebov, Free-standing microchamber arrays as a biodegradable drug depot system for implant coatings, European Polymer Journal 114 (2019) 72-80. https://doi.org/10.1016/j.eurpolymj.2019.02.029
J. Singh, S. Singh, Materials Science & Engineering B A review on Machine learning aspect in physics and mechanics of glasses, Matererials Science and Engineering B 284 (2022) 115858. https://doi.org/10.1016/j.mseb.2022.115858
S. Clavijo, F. Membrives, G. Quiroga, A. R. Boccaccini, M. J. Santillán, Electrophoretic deposition of chitosan/Bioglass® and chitosan/Bioglass®/TiO2 composite coatings for bioimplants, Ceramics International 42 (2016) 14206-14213. https://doi.org/10.1016/j.ceramint.2016.05.178
M. Farrokhi-Rad, T. Shahrabi, S. Mahmoodi, S. Khanmohammadi, Electrophoretic deposition of hydroxyapatite-chitosan-CNTs nanocomposite coatings, Ceramics International 43 (2017) 4663-4669. https://doi.org/10.1016/j.ceramint.2016.12.139
E. Avcu, F. E. Baştan, H. Z. Abdullah, M. A. U. Rehman, Y. Y. Avcu, A. R. Boccaccini, Electro-pho¬retic deposition of chitosan-based composite coatings for biomedical applications, Pro-gress in Materials Science 103 (2019) 69-108. https://doi.org/10.1016/j.pmatsci.2019.01.001
L. A. Frank, G. R. Onzi, A. S. Morawski, A. R. Pohlmann, S. S. Guterres, R. V. Contri, Chitosan as a coating material for nanoparticles intended for biomedical applications, Reactive and Functi¬onal Polymers 147 (2020) 104459. https://doi.org/10.1016/j.reactfunctpolym.2019.104459
Q. Wei, R. Haag, Universal polymer coatings and their representative biomedical applications, Materials Horizons 2 (2015) 567-577. https://doi.org/10.1039/c5mh00089k
J. A. Marins, T. Montagnon, H. Ezzaier, C. Hurel, O. Sandre, D. Baltrunas, K. Mazeika, A. Petrov, P. Kuzhir, Colloidal Stability of Aqueous Suspensions of Polymer-Coated Iron Oxide Nanorods: Implications for Biomedical Applications, ACS Applied Nano Materials (2018) 6760-6772. https://doi.org/10.1021/acsanm.8b01558
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.