Influence of operating temperature on the activation efficiency of Li-ion cells with xLi2MnO3-(1-x)LiMn0.5Ni0.5O2 electrodes

Original scientific paper

Authors

DOI:

https://doi.org/10.5599/jese.1458

Keywords:

Lithium-ion battery, cathode material, Li-rich Mn-Ni oxide, operating temperature, specific capacity
Graphical Abstract

Abstract

In this study, the effect of operating temperature at 55 °C on xLi2MnO3-(1-x)LiMn0.5Ni0.5O2 electrodes during the charge/discharge process at different current densities was investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used for structural and morphological analysis of the fabricated cathode materials, while charge-discharge curves and differential capacity were used to study the electrochemical behavior. Results confirm the formation of the structures with two phases associated with the components of the layered material. It was found that at 55 °C, a capacity higher than 357 mAh g-1 could be achieved at a voltage of 2.5-4.8 V vs. Li/Li+, which was larger than the capacity achieved at room temperature. At 55 °C, a change in valence could be observed during charging and discharging due to the change in the position of the peaks associated with Mn and Ni, highlighting cathodic material with x = 0.5 as the material that retains the layered structure at this temperature. This work confirms the good performance of electrodes made with this material at elevated temperatures and gives a better understanding of its electrochemical behavior.

Downloads

Download data is not yet available.

References

S. Ghosh, U. Bhattacharjee, S. Bhowmik, S. K. Martha, Journal of Energy and Power Technology 4(1) (2022) 002. http://dx.doi.org/10.21926/jept.2201002

J. Klink, A. Hebenbrock, J. Grabow, N. Orazov, U. Nylén, R. Benger, H.-P. Beck, Batteries 8(4) (2022) 34. https://doi.org/10.3390/batteries8040034

B. R. Long, J. R. Croy, F. Dogan, M. R. Suchomel, B. Key, J. Wen, D. J. Miller, M. M. Thackeray, M. Balasubramanian, Chemistry of Materials 26(11) (2014) 3565-3572. https://doi.org/10.1021/cm501229t

Y. Yang, X. Huang, Z. Cao, G. Chen, Nano Energy 22 (2016) 301-309. http://dx.doi.org/10.1016/j.nanoen.2016.01.026

Y. Idemoto, T. Hiranuma, N. Ishida, N. Kitamura, Journal of Power Sources 378 (2018) 198-208. https://doi.org/10.1016/j.jpowsour.2017.12.045

S. S. Nisa, M. Rahmawati, C. S. Yudha, H. Nilasary, H. Nursukatmo, H. S. Oktaviano, H. S. Muzayanha, A. Purwanto, Batteries 8 (2022) 4. https://doi.org/10.3390/batteries8010004

B. Xu, D. Qian, Z. Wang, Y. S. Meng, Materials Science and Engineering R: Reports 73(5-6) (2012) 51-65. http://dx.doi.org/10.1016/j.mser.2012.05.003

H. Yu, H. Zhou, Journal of Physical Chemistry Letters 4(8) (2013) 1268-1280. https://doi.org/10.1021/jz400032v

H. Konishi, T. Hirano, D. Takamatsu, A. Gunji, X. Feng, S. Furutsuki, T. Okumura, S. Terada, Solid State Ionics 308 (2017) 84-89. https://doi.org/10.1016/j.ssi.2017.06.005

D. Kim, G. Sandi, J. R. Croy, K.G. Gallagher, S.-H. Kang, E. Lee, M. D. Slater, C. S. Johnson, M. M. Thackeray, Journal of The Electrochemical Society 160(1) (2013) A31-A38. https://doi.org/10.1149/2.049301jes

L. Madec, G. Gachot, G. Coquil, H. Martinez, L. Monconduit, Journal of Power Sources 391 (2018) 51-58. https://doi.org/10.1016/j.jpowsour.2018.04.068

A. Samanta, S. S. Williamson, Energies 14(18) (2021) 5960. https://doi.org/10.3390/en14185960

S. Ma, M. Jiang, P. Tao, C. Song, J. Wu, J. Wang, T. Deng, W. Shang, Progress in Natural Science: Materials International 28(6) (2018) 653-666. https://doi.org/10.1016/j.pnsc.2018.11.002

H. Liu, Z. Wei, W. He, J. Zhao, Energy Conversion and Management 150 (2017) 304-330. https://doi.org/10.1016/j.enconman.2017.08.016

L. Bodenes, R. Dedryvère, H. Martinez, F. Fischer, C. Tessier, J.-P. Pérès, Journal of The Electrochemical Society 159(10) (2012) A1739. https://doi.org/10.1149/2.061210jes

W. J. Lee, K. Prasanna, Y. N. Jo, K. J. Kim, H. S. Kim, C. W. Lee, Physical Chemistry Chemical Physics 16(32) (2014) 17062-17071. http://dx.doi.org/10.1039/c4cp02075h

R. Nazario-Naveda, S. Rojas-Flores, L. Juárez-Cortijo, M. Gallozzo-Cardenas, F. N. Díaz, L. Angelats-Silva, S. M. Benites, Batteries 8(7) (2022) 63. https://doi.org/10.3390/batteries8070063

H. Konishi, T. Hirano, D. Takamatsu, T. Okumura, Journal of Electroanalytical Chemistry 873 (2020) 114402. https://doi.org/10.1016/j.jelechem.2020.114402

Y. Jiang, Z. Yang, W. Luo, X. Hu, Y. Huang, Physical Chemistry Chemical Physics 15(8) (2013) 2954-2960. https://doi.org/10.1039/C2CP44394E

Y. Xiang, J. Li, Q. Liao, X. Wu, Ionics 25(1) (2019) 81-87. https://doi.org/10.1007/s11581-018-2569-4

J. Guo, Z. Deng, S. Yan, Y. Lang, J. Gong, L. Wang, G. Liang, Journal of Materials Science 55(27) (2020) 13157-13176. https://doi.org/10.1007/s10853-020-04973-0

J. Wang, X. He, E. Paillard, N. Laszczynski, J. Li, S. Passerini, Advanced Energy Materials 6(21) (2016) 1600906. https://doi.org/10.1002/aenm.201600906

M. Gu, I. Belharouak, J. Zheng, H. Wu, J. Xiao, A. Genc, K. Amine, S. Thevuthasan, D. R. Baer, J.-G. Zhang, N. D. Browning, J. Liu, C. Wang, ACS Nano 7(1) (2013) 760-767. https://doi.org/10.1021/nn305065u

S. Hy, H. Liu, M. Zhang, D. Qian, B.-J. Hwang, J.S. Meng, Energy & Environmental Science 9(6) (2016) 1931-1954. https://doi.org/10.1039/C5EE03573B

C. Yu, G. Li, X. Guan, J. Zheng, L. Li, Electrochimica Acta 61 (2012) 216-224. https://doi.org/10.1016/j.electacta.2011.12.010

M.-H. Ryou, G.-B. Han, Y.M. Lee, J.-N. Lee, D.J. Lee, Y.O. Yoon, J.-K. Park, Electrochimica Acta 55(6) (2010) 2073-2077. https://doi.org/10.1016/j.electacta.2009.11.036

K. Redel, A. Kulka, A. Plewa, J. Molenda, Journal of The Electrochemical Society 166(3) (2019) A5333-A5342. https://doi.org/10.1149/2.0511903jes

N. Meddings, M. Heinrich, F. Overney, J.-S. Lee, V. Ruiz, E. Napolitano, S. Seitz, G. Hinds, R. Raccichini, M. Gaberšček, J. Park, Journal of Power Sources 480 (2020) 228742. https://doi.org/10.1016/j.jpowsour.2020.228742

Y. Nie, W. Xiao, C. Miao, M. Xu, C. Wang, Electrochimica Acta 334 (2020) 135654. https://doi.org/10.1016/j.electacta.2020.135654

S. Zhao, K. Yan, J. Zhang, B. Sun, G. Wang, Angewandte Chemie International Edition 60(5) (2021) 2208-2220. https://doi.org/10.1002/anie.202000262

S. Hy, W.-N. Su, J.-M. Chen, B.-J. Hwang, The Journal of Physical Chemistry C 116(48) (2012) 25242-25247. https://doi.org/10.1021/jp309313m

S. Hy, H. Liu, M. Zhang, D. Qian, B.-J. Hwang, Y. S. Meng, Energy & Environmental Science 9(6) (2016) 1931-1954. https://doi.org/10.1039/C5EE03573B

H. Peng, S.-X. Zhao, C. Huang, L.-Q. Yu, Z.-Q. Fang, G. D. Wei, ACS Applied Materials & Interfaces 12(10) (2020) 11579-11588. https://doi.org/10.1021/acsami.9b21271

S. Lv, X. Wang, W. Lu, J. Zhang, H. Ni, Energies 15(1) (2021) 60. https://doi.org/10.3390/en15010060

Published

12-09-2022

How to Cite

Nazario-Naveda, R., Rojas-Flores, S., Gallozzo-Cardenas, M., Juárez-Cortijo, L., & Angelats-Silva, L. (2022). Influence of operating temperature on the activation efficiency of Li-ion cells with xLi2MnO3-(1-x)LiMn0.5Ni0.5O2 electrodes: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(4), 767–776. https://doi.org/10.5599/jese.1458

Issue

Section

Batteries and supercapcitors