A preliminary study into the effect of oxide chemistry on the bonding mechanism of cold-sprayed titanium dioxide coatings on SUS316 stainless steel substrate

Original scientific paper

Authors

  • Noor Irinah Binti Omar Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka,Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia https://orcid.org/0000-0002-1281-9254
  • Suhana Binti Mohamed Faculty of Business Management, Universiti Teknologi Mara Johor, Kampus Pasir Gudang, Jalan Purnama, Bandar Seri Alam, 81750, Masai, Malaysia
  • Yusliza Binti Yusuf Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka,Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Toibah Binti Abdul Rahim Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Zaleha Binti Mustafa Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia https://orcid.org/0000-0002-9057-2373
  • Syahriza Binti Ismail Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia https://orcid.org/0000-0003-3448-7649
  • Ilyani Akmar Binti Abu Bakar School of Civil Engineering, College of Engineering, Universiti Teknologi Mara, 40450, Shah Alam, Selangor, Malaysia https://orcid.org/0000-0001-9641-0984
  • Santirraprahkash Selvamani Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Tempaku-Cho, Toyohashi, Aichi 441-8580, Japan

DOI:

https://doi.org/10.5599/jese.1423

Keywords:

bonding mechanism, chromium oxide, TiO2 coatings, adhesion strength
Graphical Abstract

Abstract

Current attention has focused on the preparation of thick ceramic coating of nano­structured materials as feedstock material using the thermal spray process. The cold spray method has appeared as a promising process to form ceramic nanostructured coating without significantly changing the microstructure of the initial feedstock materials due to its low processing temperature. However, deposition of ceramic powders by cold spray is not easy due to the brittle characteristics of the material. In this study, TiO2 coatings were deposited on unannealed stainless steel substrates and substrates that were annealed from room temperature to 700 °C prior to spraying. The adhesion strength was evaluated to investigate the bonding mechanism. The influence of the remaining surface oxide layer of chromium oxide, Cr2O3, which is thermodynamically preferred for stainless steel, on the bonding mechanism involved was investigated. The results showed that by increasing the annealing substrate temperature of stainless steel, the adhesion strength of the coatings (thicker oxide) is also increased. As a result, the bonding between the cold-sprayed TiO2 particle and the steel substrate is given by the chemical bonding of an inter-oxide reaction.

 

Downloads

Download data is not yet available.

References

A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, V. M. Fomin, Cold Spray Technology, Elsevier, Amsterdam, The Netherlands, 2006, p. 70-96. ISBN: 9780080465487. https://www.elsevier.com/books/cold-spray-technology/papyrin/978-0-08-045155-8

H. Assadi, F. Gärtner, T. Stoltenhoff, H. Kreye, Acta Materialia 51(15) (2003) 4379-4394. https://doi.org/10.1016/S1359-6454(03)00274-X

T. Schmidt, F. Gartner, H. Assadi, H. Kreye, Acta Materialia 54(3) (2003) 729-742. https://doi.org/10.1016/j.actama.2005.10.005

T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, T. Klassen, Journal of Thermal Spray Technology 18 (2009) 794-808. https://doi.org/10.1007/s11666-009-9357-7

F. Gärtner, T. Stoltenhoff, T. Schmidt, H. Kreye, Journal of Thermal Spray Technology 15 (2006) 223-231. https://doi.org/10.1361/105996306X108110

T. H. Van Steenkiste, J. R. Smith, R. E. Teets, J. J. Moleski, D. W. Gorkiewicz, R. P. Tison, D. R. Marantz, K. A. Kowalsky, W. L. Riggs II, P. H. Zajchowski, B. Pilsner, R. C. McCune, K. J. Barnett, Surface Coating Technology 111(1) (1999) 62-71. https://doi.org/10.1016/S0257-8972(98)00709-9

R. Ghelichi , M. Gualiagno, Journal Frattura ed Integrità Strutturale 8 (2009) 30-44. https://doi.org/10.3221/IGF-ESIS.08.03

M. Yamada, H. Isago, H. Nakano, M. Fukumoto, Journal of Thermal Spray Technology 19 (2010) 1218-1223. https://doi.org/10.1007/s11666-010-9520-1

M. Yamada, H. Isago, K. Shima, H. Nakano, M. Fukumoto, in: Thermal Spray: Global Solutions to Future Application, Proceedings of the International Thermal Spray Conference, 2010, Singapore, B. R. Marple, A. Agarwal, M. M. Hyland, Y.-C. Lau, C.-J. Li, R. S. Lima, G. Montavon (Eds.), Springer, 2011, p. 172-176. ISBN-13: 978-1493951901

N. T. Salim, M. Yamada, H. Nakano, K. Shima, H. Isago, M. Fukumoto, Surface and Coating Technology 206(2-3) (2011) 366-371. https://doi.org/10.1016/j.surfcoat.2011.07.030

M. Gardon, C. Fernández-Rodríguez, D. Garzón Sousa, J. M. Doña-Rodríguez, S. Dosta, G. Cano, J. M. Guilemany, Journal of Thermal Spray Technology 23 (2014) 1135-1140. https://doi.org/10.1007/s11666-014-0087-0

K. Nomura, Y. Ujihira, Journal of Materials Science 25 (1990) 1745-1750. https://doi.org/10.1007/BF01045379

X.Yu, J. Zhou, IntechOpen, Chapter 4, 2017, 61-73. https://doi.org/10.5772/66211

Y. Ichikawa, R. Tokoro, K. Ogawa, Proceedings of the International Thermal Spray Conference, ITSC 2018, pp. 238–241. ISBN 9781627081603.

Y. Ichikawa, K. Ogawa, Journal of Thermal Spray Technology 24 (2015) 1269-1276. https://doi.org/10.1007/s11666-015-0299-y

S.Yin, X.Wang, W.Li, Applied Surface Science 259 (2012) 294-300. https://doi.org/10.1016/j.apsusc.2012.07.036

K.H.Kim, S. Kuroda, Scripta Materialia 63(2) (2010) 215-218. https://doi.org/10.1016/j.scriptamat.2010.03.061

M. Song, H. Araki, S. Kuroda, K. Sakaki, Journal of Physics D 46 (2013) 195301. https://doi.org/10.1088/0022-3727/46/19/195301

M. V. Vidaller, A. List, F. Gaertner, T. Klassen, Journal of Thermal Spray Technology 24 (2015) 644-658. https://doi.org/10.1007/s11666-014-0200-4

University of Cambridge. The Ellingham diagram in removal of contaminants. Dissemination of IT for the Promotion of Materials Science (DoITPoMS), TLP Library. https://www.doitpoms.ac.uk/tlplib/recycling-metals/ellingham.php (accessed Jun 2nd, 2022).

P. Straton, International Heat Treatment and Surface Engineering 7(2) (2013) 70-73. https://doi.org/10.1179/1749514813Z.00000000053

G. C. Allen, J. M. Dyke, S. J. Harris, A. Morris, Oxidation of Metals 29 (1988) 391-408. https://doi.org/10.1007/BF00666841

L-M. Liu, P. Crawford, P. Hu, Progress in Surface Science 84(5-6) (2009) 155-176. https://doi.org/10.1016/j.progsurf.2009.01.002

Published

10-08-2022

How to Cite

Omar, N. I. B., Mohamed, S. B. ., Yusuf, Y. B., Abdul Rahim, T. B., Mustafa, Z. B. ., Ismail, S. B. ., Abu Bakar, I. A. B. ., & Selvamani, S. (2022). A preliminary study into the effect of oxide chemistry on the bonding mechanism of cold-sprayed titanium dioxide coatings on SUS316 stainless steel substrate: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(4), 579–591. https://doi.org/10.5599/jese.1423

Issue

Section

Electrodeposition and coatings