A preliminary study into the effect of oxide chemistry on the bonding mechanism of cold-sprayed titanium dioxide coatings on SUS316 stainless steel substrate
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1423Keywords:
bonding mechanism, chromium oxide, TiO2 coatings, adhesion strengthAbstract
Current attention has focused on the preparation of thick ceramic coating of nanostructured materials as feedstock material using the thermal spray process. The cold spray method has appeared as a promising process to form ceramic nanostructured coating without significantly changing the microstructure of the initial feedstock materials due to its low processing temperature. However, deposition of ceramic powders by cold spray is not easy due to the brittle characteristics of the material. In this study, TiO2 coatings were deposited on unannealed stainless steel substrates and substrates that were annealed from room temperature to 700 °C prior to spraying. The adhesion strength was evaluated to investigate the bonding mechanism. The influence of the remaining surface oxide layer of chromium oxide, Cr2O3, which is thermodynamically preferred for stainless steel, on the bonding mechanism involved was investigated. The results showed that by increasing the annealing substrate temperature of stainless steel, the adhesion strength of the coatings (thicker oxide) is also increased. As a result, the bonding between the cold-sprayed TiO2 particle and the steel substrate is given by the chemical bonding of an inter-oxide reaction.
Downloads
References
A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, V. M. Fomin, Cold Spray Technology, Elsevier, Amsterdam, The Netherlands, 2006, p. 70-96. ISBN: 9780080465487. https://www.elsevier.com/books/cold-spray-technology/papyrin/978-0-08-045155-8
H. Assadi, F. Gärtner, T. Stoltenhoff, H. Kreye, Acta Materialia 51(15) (2003) 4379-4394. https://doi.org/10.1016/S1359-6454(03)00274-X
T. Schmidt, F. Gartner, H. Assadi, H. Kreye, Acta Materialia 54(3) (2003) 729-742. https://doi.org/10.1016/j.actama.2005.10.005
T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, T. Klassen, Journal of Thermal Spray Technology 18 (2009) 794-808. https://doi.org/10.1007/s11666-009-9357-7
F. Gärtner, T. Stoltenhoff, T. Schmidt, H. Kreye, Journal of Thermal Spray Technology 15 (2006) 223-231. https://doi.org/10.1361/105996306X108110
T. H. Van Steenkiste, J. R. Smith, R. E. Teets, J. J. Moleski, D. W. Gorkiewicz, R. P. Tison, D. R. Marantz, K. A. Kowalsky, W. L. Riggs II, P. H. Zajchowski, B. Pilsner, R. C. McCune, K. J. Barnett, Surface Coating Technology 111(1) (1999) 62-71. https://doi.org/10.1016/S0257-8972(98)00709-9
R. Ghelichi , M. Gualiagno, Journal Frattura ed Integrità Strutturale 8 (2009) 30-44. https://doi.org/10.3221/IGF-ESIS.08.03
M. Yamada, H. Isago, H. Nakano, M. Fukumoto, Journal of Thermal Spray Technology 19 (2010) 1218-1223. https://doi.org/10.1007/s11666-010-9520-1
M. Yamada, H. Isago, K. Shima, H. Nakano, M. Fukumoto, in: Thermal Spray: Global Solutions to Future Application, Proceedings of the International Thermal Spray Conference, 2010, Singapore, B. R. Marple, A. Agarwal, M. M. Hyland, Y.-C. Lau, C.-J. Li, R. S. Lima, G. Montavon (Eds.), Springer, 2011, p. 172-176. ISBN-13: 978-1493951901
N. T. Salim, M. Yamada, H. Nakano, K. Shima, H. Isago, M. Fukumoto, Surface and Coating Technology 206(2-3) (2011) 366-371. https://doi.org/10.1016/j.surfcoat.2011.07.030
M. Gardon, C. Fernández-Rodríguez, D. Garzón Sousa, J. M. Doña-Rodríguez, S. Dosta, G. Cano, J. M. Guilemany, Journal of Thermal Spray Technology 23 (2014) 1135-1140. https://doi.org/10.1007/s11666-014-0087-0
K. Nomura, Y. Ujihira, Journal of Materials Science 25 (1990) 1745-1750. https://doi.org/10.1007/BF01045379
X.Yu, J. Zhou, IntechOpen, Chapter 4, 2017, 61-73. https://doi.org/10.5772/66211
Y. Ichikawa, R. Tokoro, K. Ogawa, Proceedings of the International Thermal Spray Conference, ITSC 2018, pp. 238–241. ISBN 9781627081603.
Y. Ichikawa, K. Ogawa, Journal of Thermal Spray Technology 24 (2015) 1269-1276. https://doi.org/10.1007/s11666-015-0299-y
S.Yin, X.Wang, W.Li, Applied Surface Science 259 (2012) 294-300. https://doi.org/10.1016/j.apsusc.2012.07.036
K.H.Kim, S. Kuroda, Scripta Materialia 63(2) (2010) 215-218. https://doi.org/10.1016/j.scriptamat.2010.03.061
M. Song, H. Araki, S. Kuroda, K. Sakaki, Journal of Physics D 46 (2013) 195301. https://doi.org/10.1088/0022-3727/46/19/195301
M. V. Vidaller, A. List, F. Gaertner, T. Klassen, Journal of Thermal Spray Technology 24 (2015) 644-658. https://doi.org/10.1007/s11666-014-0200-4
University of Cambridge. The Ellingham diagram in removal of contaminants. Dissemination of IT for the Promotion of Materials Science (DoITPoMS), TLP Library. https://www.doitpoms.ac.uk/tlplib/recycling-metals/ellingham.php (accessed Jun 2nd, 2022).
P. Straton, International Heat Treatment and Surface Engineering 7(2) (2013) 70-73. https://doi.org/10.1179/1749514813Z.00000000053
G. C. Allen, J. M. Dyke, S. J. Harris, A. Morris, Oxidation of Metals 29 (1988) 391-408. https://doi.org/10.1007/BF00666841
L-M. Liu, P. Crawford, P. Hu, Progress in Surface Science 84(5-6) (2009) 155-176. https://doi.org/10.1016/j.progsurf.2009.01.002
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.