Chemical vapor deposited graphene-based quasi-solid-state ultrathin and flexible sodium-ion supercapacitor

Original scientific paper

  • Mohammed Saquib Khan Materials Research Centre, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur, 302017, India https://orcid.org/0000-0002-1418-1549
  • Preeti Shakya Materials Research Centre, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur, 302017, India https://orcid.org/0000-0002-9869-6194
  • Nikita Bhardwaj Department of Physics, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur, 302017, India https://orcid.org/0000-0001-9634-055X
  • Deependra Jhankal Department of Physics, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur, 302017, India. https://orcid.org/0000-0002-6008-4424
  • Atul Kumar Sharma Materials Research Centre, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur, 302017, India
  • Malay Kumar Banerjee Research Chair, SGVU, Jaipur,302017, India.
  • Kanupriya Sachdev 1Materials Research Centre, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, India and Department of Physics, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 30201, India https://orcid.org/0000-0002-1942-2452
Keywords: Gel polymer electrolyte, E-beam deposition, flexible electronics, light-weight supercapacitor, chemical vapor deposition, few-layer graphene
Graphical Abstract

Abstract

Flexible electronic devices find wide application in wearable electronics and foldable gadgets. This article reports chemical vapor deposited (CVD) few-layers graphene for a solid-state flexible supercapacitor device. Raman spectroscopy analysis reveals up to five layers in the graphene samples. Polyvinyl alcohol-Na2SO4 hydrogel membrane is used as a gel polymer electrolyte (GPE). 50 nm thick silver (Ag) deposited on polyethylene tere­phthalate (PET) through E-beam deposition served as the flexible current collector for the device. Galvanostatic charge-discharge (GCD) executed on the fabricated device to ana­lyze its electrochemical performance yielded a specific areal capacitance of 15.3 mF cm-2 at 0.05 mA cm-2 current density. The obtained power density of the fabricated device is 0.53 µWh cm-2 at a power density of 25 µW cm-2.

Downloads

Download data is not yet available.

References

Y. Wang, X. Wu, Y. Han, T. Li, Journal of Energy Storage 42 (2021) 103053. https://doi.org/10.1016/j.est.2021.103053

J. H. Yoon, Y. A. Kumar, S. Sambasivam, S. A. Hira, T. N. V. Krishna, K. Zeb, W. Uddin, K. D. Kumar, I. M. Obaidat, S. Kim, H. J. Kim, Journal of Energy Storage 32 (2020) 101988. https://doi.org/10.1016/j.est.2020.101988

M. R. Pallavolu, Y. Anil Kumar, G. Mani, R. A. Alshgari, M. Ouladsmane, S. W. Joo, Journal of Electroanalytical Chemistry 899 (2021) 115695. https://doi.org/10.1016/j.jelechem.2021.115695

D. K. Kulurumotlakatla, A. K. Yedluri, H. J. Kim, Journal of Energy Storage 31 (2020) 101619. https://doi.org/10.1016/j.est.2020.101619

Y. A. Kumar, K. D. Kumar, H. J. Kim, Dalton Transactions 49 (2020) 3622-3629. https://doi.org/10.1039/d0dt00268b

Y. A. Kumar, S. Singh, D. K. Kulurumotlakatla, H. J. Kim, New Journal of Chemistry 44 (2019) 522-529. https://doi.org/10.1039/c9nj05529k

N. R. Reddy, P. M. Reddy, T. K. Mandal, A. K. Yedluri, S. W. Joo, Journal of Energy Storage 43 (2021) 103302. https://doi.org/10.1016/j.est.2021.103302

Y. A. Kumar, S. Sambasivam, S. A. Hira, K. Zeb, W. Uddin, T. N. V. Krishna, K. D. Kumar, I. M. Obaidat, H. J. Kim, Electrochimica Acta 364 (2020) 137318. https://doi.org/10.1016/j.electacta.2020.137318

Y. A. Kumar, K. D. Kumar, H. J. Kim, Electrochimica Acta 330 (2020) 135261. https://doi.org/10.1016/j.electacta.2019.135261

Y. A. Kumar, K. D. Kumar, H. J. Kim, Dalton Transactions 49 (2020) 4050-4059. https://doi.org/10.1039/d0dt00191k

Y. A. Kumar, H. J. Kim, New Journal of Chemistry 42 (2018) 19971-19978. https://doi.org/10.1039/c8nj05401k

A. K. Yedluri, D. K. Kulurumotlakatla, S. Sangaraju, I. M. Obaidat, H. J. Kim, Journal of Energy Storage 31 (2020) 101623. https://doi.org/10.1016/j.est.2020.101623

A. K. Thakur, K. Kurtyka, M. Majumder, X. Yang, H. Q. Ta, A. Bachmatiuk, L. Liu, B. Trzebicka, M. H. Rummeli, Advanced Materials Interfaces 9 (2022) 2101964. https://doi.org/10.1002/admi.202101964

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Small 7 (2011) 1876-1902. https://doi.org/10.1002/smll.201002009

Q. Xiang, J. Yu, M. Jaroniec, Chemical Society Reviews 41 (2012) 782-796. https://doi.org/10.1039/c1cs15172j

M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Nano Letters 8 (2008) 3498-3502. https://doi.org/10.1021/nl802558y

Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, K. P. Loh, ACS Nano 5 (2011) 9927-9933. https://doi.org/10.1021/nn203700w

D. A. C. Brownson, C. E. Banks, Physical Chemistry Chemical Physics 14 (2012) 8264-8281. https://doi.org/10.1039/c2cp40225d

M. Losurdo, M. M. Giangregorio, P. Capezzuto, G. Bruno, Physical Chemistry Chemical Physics 13 (2011) 20836-20843. https://doi.org/10.1039/c1cp22347j

S. Palsaniya, A. K. Dasmahapatra, Graphene Supercapacitor Electrode of Liquid Hydrocarbons using CVD Process, in: 2022 International Conference for Advancement in Technology, ICONAT 2022, Institute of Electrical and Electronics Engineers Inc., 2022. https://doi.org/10.1109/ICONAT53423.2022.9725983

G. Gawlik, P. Ciepielewski, J. M. Baranowski, Applied Sciences (Switzerland) 9 (2019) 544. https://doi.org/10.3390/app9030544

I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, S. Smirnov, ACS Nano 5 (2011) 6069-6076. https://doi.org/10.1021/nn201978y

Y. S. No, H. K. Choi, J. S. Kim, H. Kim, Y. J. Yu, C. G. Choi, J. S. Choi, Scientific Reports 8 (2018) 571. https://doi.org/10.1038/s41598-017-19084-1

A. K. Nair, Indu Elizabeth, Gopukumar S., S. Thomas, Kala M. S, N. Kalarikkal, Applied Surface Science 428 (2018) 1119-1129. https://doi.org/10.1016/j.apsusc.2017.09.214

Y. T. Liu, P. Zhang, N. Sun, B. Anasori, Q. Z. Zhu, H. Liu, Y. Gogotsi, B. Xu, Advanced Materials 30 (2018) 1707334. https://doi.org/10.1002/adma.201707334

J. H. Jeong, G. W. Lee, Y. H. Kim, Y. J. Choi, K. C. Roh, K. B. Kim, Chemical Engineering Journal 378 (2019) 122126. https://doi.org/10.1016/j.cej.2019.122126

F. Meng, T. Long, B. Xu, Y. Zhao, Z. Hu, L. Zhang, J. Liu, Frontiers in Chemistry 8 (2020) 652. https://doi.org/10.3389/fchem.2020.00652

F. Rahmanabadi, P. Sangpour, A. A. Sabouri-Dodaran, Journal of Electronic Materials 48 (2019) 5813-5820. https://doi.org/10.1007/s11664-019-07361-w

L. Gao, S. Chen, L. Zhang, X. Yang, Journal of Alloys and Compounds 766 (2018) 284-290. https://doi.org/10.1016/j.jallcom.2018.06.288

W. Ye, H. Wang, J. Ning, Y. Zhong, Y. Hu, Journal of Energy Chemistry 57 (2021) 219-232. https://doi.org/10.1016/j.jechem.2020.09.016

S. Alipoori, S. Mazinani, S. H. Aboutalebi, F. Sharif, Journal of Energy Storage 27 (2020) 101072. https://doi.org/10.1016/j.est.2019.101072

J. Wang, G. Chen, S. Song, Electrochimica Acta 330 (2020) 135322. https://doi.org/10.1016/j.electacta.2019.135322

A. K. Yedluri, H. J. Kim, Dalton Transactions 47 (2018) 15545-15554. https://doi.org/10.1039/c8dt03598a

L. Ma, R. Liu, H. Niu, M. Zhao, Y. Huang, Composites Science and Technology 137 (2016) 87-93. https://doi.org/10.1016/j.compscitech.2016.10.027

M. T. de A. Freire, A. P. Damant, L. Castle, F. G. R. Reyes, Packaging Technology and Science 12 (1999) 29-36. https://doi.org/10.1002/(SICI)1099-1522(199901/02)12:1%3C29::AID-PTS451%3E3.0.CO;2-D

M. G. Faraj, K. Ibrahim, M. K. M Ali, Optoelectronics and Advanced Materials-Rapid Communications 5 (2011) 879-882. https://www.researchgate.net/publication/224880095

I. Prosyčevas, J. Puišo, S. Tamulevičius, A. Juraitis, M. Andrulevičius, B. Čyžiūte, Thin Solid Films 495 (2006) 118-123. https://doi.org/10.1016/j.tsf.2005.08.278

A. I. Oje, A. A. Ogwu, M. Mirzaeian, A. M. Oje, N. Tsendzughul, Applied Surface Science 488 (2019) 142-150. https://doi.org/10.1016/j.apsusc.2019.05.101

K. S. Kim, H. J. Lee, C. Lee, S. K. Lee, H. Jang, J. H. Ahn, J. H. Kim, H. J. Lee, ACS Nano 5 (2011) 5107-5114. https://doi.org/10.1021/nn2011865

R. Zan, A. Altuntepe, Journal of Molecular Structure. 1199 (2020) 127026. https://doi.org/10.1016/j.molstruc.2019.127026

Y. Hwangbo, C. K. Lee, S. M. Kim, J. H. Kim, K. S. Kim, B. Jang, H. J. Lee, S. K. Lee, S. S. Kim, J. H. Ahn, S. M. Lee, Scientific Reports 4 (2014) 4439. https://doi.org/10.1038/srep04439

Y. P. Hsieh, Y. W. Wang, C. C. Ting, H. C. Wang, K. Y. Chen, C. C. Yang, Journal of Nanomaterials 2013 (2013) 393724. https://doi.org/10.1155/2013/393724

L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, Physics Reports 473 (2009) 51-87. https://doi.org/10.1016/j.physrep.2009.02.003

R. Beams, L. Gustavo Cançado, L. Novotny, Journal of Physics: Condensed Matter 27 (2015) 083002. https://doi.org/10.1088/0953-8984/27/8/083002

J. B. Wu, M. L. Lin, X. Cong, H. N. Liu, P. H. Tan, Chemical Society Reviews 47 (2018) 1822-1873. https://doi.org/10.1039/c6cs00915h

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, Physical Review Letters 97 (2006) 187401. https://doi.org/10.1103/PhysRevLett.97.187401

Z. Li, W. Zhang, J. Guo, B. Yang, J. Yuan, Vacuum 117 (2015) 35-39. https://doi.org/10.1016/j.vacuum.2015.03.032

T. Chen, Y. Xue, A. K. Roy, L. Dai, ACS Nano 8 (2014) 1039-1046. https://doi.org/10.1021/nn405939w

N. S. Rajput, S. Al Zadjali, M. Gutierrez, A. M. K. Esawi, M. Al Teneiji, RSC Advances 11 (2021) 27381-27405. https://doi.org/10.1039/d1ra05157a

X. Yang, J. Zhu, L. Qiu, D. Li, Advanced Materials 23 (2011) 2833-2838. https://doi.org/10.1002/adma.201100261

Y. Zhang, H. Zhang, F. Li, H. Shu, Z. Chen, Y. Sui, Y. Zhang, X. Ge, G. Yu, Z. Jin, X. Liu, Carbon 96 (2016) 237-242. https://doi.org/10.1016/j.carbon.2015.09.041

C. Feng, Z. Yi, L. F. Dumée, F. She, Z. Peng, W. Gao, L. Kong, Carbon 139 (2018) 672-679. https://doi.org/10.1016/j.carbon.2018.07.016

S. Yan, G. Zhang, H. Jiang, F. Li, L. Zhang, Y. Xia, Z. Wang, Y. Wu, H. Li, ACS Applied Materials and Interfaces 11 (2019) 10736-10744. https://doi.org/10.1021/acsami.9b00274

D. Kim, K. Lee, M. Kim, Y. Kim, H. Lee, Electrochimica Acta 300 (2019) 461-469. https://doi.org/10.1016/j.electacta.2019.01.141

X. Zang, P. Li, Q. Chen, K. Wang, J. Wei, D. Wu, H. Zhu, Journal of Applied Physics 115 (2014) 024305. https://doi.org/10.1063/1.4861629

M. Bláha, M. Bouša, V. Valeš, O. Frank, M. Kalbáč, ACS Applied Materials and Interfaces 13 (2021) 34686-34695. https://doi.org/10.1021/acsami.1c05054

J. Ye, H. Tan, S. Wu, K. Ni, F. Pan, J. Liu, Z. Tao, Y. Qu, H. Ji, P. Simon, Y. Zhu, Advanced Materials 30 (2018) 1801384. https://doi.org/10.1002/adma.201801384

J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A. L. Mohana Reddy, J. Yu, R. Vajtai, P. M. Ajayan, Nano Letters 11 (2011) 1423-1427. https://doi.org/10.1021/nl200225j

P. Xu, J. Kang, J. B. Choi, J. Suhr, J. Yu, F. Li, J. H. Byun, B. S. Kim, T. W. Chou, ACS Nano 8 (2014) 9437-9445. https://doi.org/10.1021/nn503570j

H. Ur Rehman, A. Shuja, M. Ali, I. Murtaza, H. Meng, Journal of Energy Storage 28 (2020) 101243. https://doi.org/10.1016/j.est.2020.101243

M. Arunkumar, A. Paul, ACS Omega 2 (2017) 8039-8050. https://doi.org/10.1021/acsomega.7b01275

N. O. Laschuk, E. B. Easton, O. V. Zenkina, RSC Advances 11 (2021) 27925-27936. https://doi.org/10.1039/d1ra03785d

P. L. Taberna, P. Simon, J. F. Fauvarque, Journal of The Electrochemical Society 150 (2003) A292. https://doi.org/10.1149/1.1543948

A. Ramadoss, K. Y. Yoon, M. J. Kwak, S. I. Kim, S. T. Ryu, J. H. Jang, Journal of Power Sources 337 (2017) 159-165. https://doi.org/10.1016/j.jpowsour.2016.10.091

Y. Chen, X. Y. Fu, Y. Y. Yue, N. Zhang, J. Feng, H. B. Sun, Applied Surface Science 467-468 (2019) 104-111. https://doi.org/10.1016/j.apsusc.2018.10.093

P. Xu, J. Kang, J. B. Choi, J. Suhr, J. Yu, F. Li, J. H. Byun, B. S. Kim, T. W. Chou, ACS Nano 8 (2014) 9437-9445. https://doi.org/10.1021/nn503570j

Y. Gao, Y. S. Zhou, W. Xiong, L. J. Jiang, M. Mahjouri-Samani, P. Thirugnanam, X. Huang, M. M. Wang, L. Jiang, Y. F. Lu, APL Materials 1 (2013) 012101. https://doi.org/10.1063/1.4808242

X. Zang, P. Li, Q. Chen, K. Wang, J. Wei, D. Wu, H. Zhu, Journal of Applied Physics 115 (2014) 024305. https://doi.org/10.1063/1.4861629

Y. Meng, Y. Zhao, C. Hu, H. Cheng, Y. Hu, Z. Zhang, G. Shi, L. Qu, Advanced Materials 25 (2013) 2326-2331. https://doi.org/10.1002/adma.201300132

H. Cheng, Z. Dong, C. Hu, Y. Zhao, Y. Hu, L. Qu, N. Chen, L. Dai, Nanoscale 5 (2013) 3428-3434. https://doi.org/10.1039/c3nr00320e

G. K. Dalapati, H. Sharma, A. Guchhait, N. Chakrabarty, P. Bamola, Q. Liu, G. Saianand, A. M. Sai Krishna, S. Mukhopadhyay, A. Dey, T. K. S. Wong, S. Zhuk, S. Ghosh, S. Chakrabortty, C. Mahata, S. Biring, A. Kumar, C. S. Ribeiro, S. Ramakrishna, A. K. Chakraborty, S. Krishnamurthy, P. Sonar, M. Sharma, Journal of Materials Chemistry A 9 (2021) 16621-16684. https://doi.org/10.1039/d1ta01291f

B. Hsia, M. S. Kim, L. E. Luna, N. R. Mair, Y. Kim, C. Carraro, R. Maboudian, ACS Applied Materials and Interfaces 6 (2014) 18413-18417. https://doi.org/10.1021/am504695t

Y. Ko, M. Kwon, W. K. Bae, B. Lee, S. W. Lee, J. Cho, Nature Communications 8 (2017) 536. https://doi.org/10.1038/s41467-017-00550-3

Published
09-09-2022
Section
Batteries and supercapcitors