An oxygen reduction reaction electrocatalyst tuned for hydrogen peroxide generation based on a pseudo-graphite doped with graphitic nitrogen

Original scientific paper


  • Kailash Hamal Department of Chemistry, University of Idaho, 875 Perimeter Dr, MS 2343, Moscow, ID, 83844, USA
  • Dipak Koirala partment of Chemistry, University of Idaho, 875 Perimeter Dr, MS 2343, Moscow, ID 83844, USA
  • Jeremy May Department of Chemistry, University of Idaho, 875 Perimeter Dr, MS 2343, Moscow, ID 83844, USA
  • Forrest Dalbec Department of Chemistry, University of Idaho, 875 Perimeter Dr, MS 2343, Moscow, ID 83844, USA
  • Nolan Nicholas Nano Lab, 22 Bedford St. Waltham, MA, 02453, USA
  • I. Francis Cheng Department of Chemistry, University of Idaho, 875 Perimeter Dr, MS 2343, Moscow, ID, 83844, USA



Hydrogen peroxide, oxygen reduction reaction, electrocatalysis, N-doped carbon
Graphical Abstract


The carbon material, GUITAR (pseudo-graphite from the University of Idaho thermolyzed asphalt reaction) can be doped with nitrogen in two prevalent forms. In a previous study N(py)-GUITAR had a predominance of pyridinic and pyrrolic moieties with no graphitic nitrogen. In this study N(g)-GUITAR contains a 9.7 % N atomic abundance, with that fraction consisting of 72.3 % graphitic, 23.7 % pyridinic, and 0 % pyrrolic nitrogen. The two materials allow for the examination of hypotheses regarding the importance of the three different nitrogen moieties in the oxygen reduction reaction (ORR). In the previous investigation, the lack of graphitic nitrogen of N(py)-GUITAR gave a preferred pathway of 4e- ORR to H2O. In this investigation, N(g)-GUITAR gave a 2e- ORR pathway to H2O2. This was elucidated by current efficiency and hydrodynamic voltammetry studies. The high predominance of graphitic nitrogen confirms the hypothesis regarding 2e- vs. 4e- ORR pathways with N-doped carbon materials. N(g)-GUITAR was also evaluated for parasitic pathways for H2O2 production. At -0.95 V vs. Ag/AgCl the combination of current efficiency for H2O2 is 96 % in 0.05 M Na2SO4 with a production rate of 4.9 mg cm-2 h-1, is the highest reported in the literature. This indicates possibilities for water purification and treatment applications, which require 10 to 250 mg L-1, depending on conditions.


Download data is not yet available.


R. Ciriminna, L. Albanese, F. Meneguzzo, M. Pagliaro, Hydrogen peroxide: A key chemical for today’s sustainable development, ChemSusChem 9 (2016) 3374-3381.

J. M. Campos-Martin, G. Blanco-Brieva, J. L. G. Fierro, Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process, Angewandte Chemie International Edition 45 (2006) 6962-6984.

S. Siahrostami, S. J. Villegas, A. H. Bagherzadeh Mostaghimi, S. Back, A. B. Farimani, H. Wang, K. A. Persson, J. Montoya, A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen peroxide, ACS Catalysis 10 (2020) 7495-7511.

K. Gopal, S. S. Tripathy, J. L. Bersillon, S. P. Dubey, Chlorination byproducts, their toxicodynamics and removal from drinking water, Journal of Hazardous Materials 140 (2007) 1-6.

S. Yang, A. Verdaguer-Casadevall, L. Arnarson, L. Silvioli, V. Čolić, R. Frydendal, J. Rossmeisl, I. Chorkendorff, I. E. L. Stephens, Toward the decentralized electrochemical production of H2O2: A focus on the catalysis, ACS Catalysis 8 (2018) 4064-4081.

E. Jung, H. Shin, W. Hooch Antink, Y.-E. Sung, T. Hyeon, Recent advances in electrochemical oxygen reduction to H2O2: Catalyst and cell design, ACS Energy Letters 5 (2020) 1881-1892.

J. Gao, B. Liu, Progress of electrochemical hydrogen peroxide synthesis over single atom catalysts, ACS Materials Letters 2 (2020) 1008-1024.

C. Badellino, C. A. Rodrigues, R. Bertazzoli, Oxidation of pesticides by in situ electrogene¬ra-ted hydrogen peroxide: Study for the degradation of 2,4-dichlorophenoxyacetic acid, Journal of Hazardous Materials 137 (2006) 856-864.

W. Zhou, X. Meng, J. Gao, A. N. Alshawabkeh, Hydrogen peroxide generation from O2 electroreduction for environmental remediation: A state-of-the-art review, Chemosphere 225 (2019) 588-607.

G. Xia, Y. Lu, H. Xu, Electrogeneration of hydrogen peroxide for electro-Fenton via oxygen reduction using polyacrylonitrile-based carbon fiber brush cathode, Electrochimica Acta 158 (2015) 390-396.

J. Song, S. Cho, Catalytic materials for efficient electrochemical production of hydrogen peroxide, APL Materials 8 (2020) 050701.

H. Kabir, H. Zhu, J. May, K. Hamal, Y. Kan, T. Williams, E. Echeverria, D.N. McIlroy, D. Estrada, P.H. Davis, T. Pandhi, K. Yocham, K. Higginbotham, A. Clearfield, I.F. Cheng, The sp2-sp3 carbon hybridization content of nanocrystalline graphite from pyrolyzed vegetable oil, comparison of electrochemistry and physical properties with other carbon forms and allotropes, Carbon N Y. 144 (2019) 831-840.

K. Hamal, J. May, H. Zhu, F. Dalbec, E. Echeverria, D. N. McIlroy, E. Aston, I. F. Cheng, Electrochemical aspects of a nitrogen-doped pseudo-graphitic carbon material: Resistance to electrode fouling by air-aging and dopamine electro-oxidation, C-Journal of Carbon Research (Basel) 6 (2020) 68.

I.O. Gyan, P. M. Wojcik, D. E. Aston, D. N. McIlroy, I. F. Cheng, A study of the electro¬chemi-cal properties of a new graphitic material: GUITAR, ChemElectroChem 2 (2015) 700-706.

K. Hamal, J. May, D. Koirala, H. Zhu, H. Kabir, E. Echeverria, D. N. McIlroy, N. Nicholas, I. F. Cheng, Highly stable, low-cost metal-free oxygen reduction reaction electrocatalyst based on nitrogen-doped pseudo-graphite, Energy & Fuels 35 (2021) 10146-10155.

H. Kabir, I. Gyan, J. Foutch, H. Zhu, I. Cheng, Application of GUITAR on the negative electrode of the vanadium redox flow battery: Improved V3+/2+ heterogeneous electron transfer with reduced hydrogen gassing, C-Journal of Carbon Research (Basel) 2 (2016) 13.

D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts, Science 351 (2016) 361-365.

K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction, Science 323 (2009) 760-764.

R. Ma, G. Lin, Y. Zhou, Q. Liu, T. Zhang, G. Shan, M. Yang, J. Wang, A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts, NPJ Computational Materials 5 (2019) 78.

N. P. Subramanian, X. Li, V. Nallathambi, S. P. Kumaraguru, H. Colon-Mercado, G. Wu, J.-W. Lee, B.N. Popov, Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells, Journal of Power Sources 188 (2009) 38-44.

J. Zhang, G. Zhang, S. Jin, Y. Zhou, Q. Ji, H. Lan, H. Liu, J. Qu, Graphitic N in nitrogen-doped carbon promotes hydrogen peroxide synthesis from electrocatalytic oxygen reduction, Carbon N Y. 163 (2020) 154-161.

L. Lai, J. R. Potts, D. Zhan, L. Wang, C. K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R. S. Ruoff, Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction, Energy & Environmental Science 5 (2012) 7936-7942.

E. Contreras, D. Dominguez, H. Tiznado, J. Guerrero-Sanchez, N. Takeuchi, G. Alonso-Nunez, O. E. Contreras, M. T. Oropeza-Guzmán, J. M. Romo-Herrera, N-doped carbon nanotubes enriched with graphitic nitrogen in a buckypaper configuration as efficient 3D electrodes for oxygen reduction to H2O2, Nanoscale 11 (2019) 2829-2839.

R. E. G. Smith, T. J. Davies, N. de B. Baynes, R. J. Nichols, The electrochemical charac¬teri-sation of graphite felts, Journal of Electroanalytical Chemistry 747 (2015) 29-38.

D. Koirala, N. Yensen, P.B. Allen, Open source all-iron battery 2.0, HardwareX 9 (2021) e00171.

R. M. Sellers, Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate, Analyst 105 (1980) 950.

X. Huang, Fabrication and properties of carbon fibers, Materials 2 (2009) 2369-2403.

M. Panizza, G. Cerisola, Electrochemical generation of H2O2 in low ionic strength media on gas diffusion cathode fed with air, Electrochimica Acta 54 (2008) 876-878.

A. R. Khataee, M. Safarpour, M. Zarei, S. Aber, Electrochemical generation of H2O2 using immobilized carbon nanotubes on graphite electrode fed with air: Investigation of operational parameters, Journal of Electroanalytical Chemistry 659 (2011) 63-68.

G. Panomsuwan, N. Saito, T. Ishizaki, Nitrogen-doped carbon nanoparticle–carbon nanofiber composite as an efficient metal-free cathode catalyst for oxygen reduction reaction, ACS Applied Materials & Interfaces 8 (2016) 6962-6971.

T. Chen, Z. Cai, Z. Yang, L. Li, X. Sun, T. Huang, A. Yu, H.G. Kia, H. Peng, Nitrogen-doped carbon nanotube composite fiber with a core-sheath structure for novel electrodes, Advanced Materials 23 (2011) 4620-4625.

Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, X.-H. Xia, Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis, ACS Nano 5 (2011) 4350-4358.

Z. Chen, S. Chen, S. Siahrostami, P. Chakthranont, C. Hahn, D. Nordlund, S. Dimosthenis, J.K. Nørskov, Z. Bao, T.F. Jaramillo, Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H2O2, Reaction Chemistry & Engineering 2 (2017) 239-245.

Y. Liu, X. Quan, X. Fan, H. Wang, S. Chen, High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon, Angewandte Chemie International Edition 54 (2015) 6837-6841.

W. Yang, M. Zhou, J. Cai, L. Liang, G. Ren, L. Jiang, Ultrahigh yield of hydrogen peroxide on graphite felt cathode modified with electrochemically exfoliated graphene, Journal of Materials Chemistry A 5 (2017) 8070-8080.

A. Bonakdarpour, D. Esau, H. Cheng, A. Wang, E. Gyenge, D. P. Wilkinson, Preparation and electrochemical studies of metal–carbon composite catalysts for small-scale electrosynthesis of H2O2, Electrochimica Acta 56 (2011) 9074-9081.

L. Zhou, M. Zhou, C. Zhang, Y. Jiang, Z. Bi, J. Yang, Electro-Fenton degradation of p-nitro-phenol using the anodized graphite felts, Chemical Engineering Journal 233 (2013) 185-192.

L. Zhou, M. Zhou, Z. Hu, Z. Bi, K. G. Serrano, Chemically modified graphite felt as an efficient cathode in electro-Fenton for p-nitrophenol degradation, Electrochimica Acta 140 (2014) 376-383.

Y. Xia, H. Shang, Q. Zhang, Y. Zhou, X. Hu, Electrogeneration of hydrogen peroxide using phosphorus-doped carbon nanotubes gas diffusion electrodes and its application in electro-Fenton, Journal of Electroanalytical Chemistry 840 (2019) 400-408.

X. Yu, M. Zhou, G. Ren, L. Ma, A novel dual gas diffusion electrodes system for efficient hydrogen peroxide generation used in electro-Fenton, Chemical Engineering Journal 263 (2015) 92-100.

Y. Sheng, S. Song, X. Wang, L. Song, C. Wang, H. Sun, X. Niu, Electrogeneration of hydrogen peroxide on a novel highly effective acetylene black-PTFE cathode with PTFE film, Electrochimica Acta 56 (2011) 8651-8656.

A. da Pozzo, L. di Palma, C. Merli, E. Petrucci, An experimental comparison of a graphite electrode and a gas diffusion electrode for the cathodic production of hydrogen peroxide, Journal of Applied Electrochemistry 35 (2005) 413-419.

F. Yu, M. Zhou, X. Yu, Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration, Electro-chimica Acta 163 (2015) 182-189.

X. Xu, J. Chen, G. Zhang, Y. Song, F. Yang, Homogeneous electro-fenton oxidative degradation of reactive brilliant blue using a graphene doped gas-diffusion cathode, International Journal of Electrochemical Science 9 (2014) 569-579.

W. Zhou, Y. Ding, J. Gao, K. Kou, Y. Wang, X. Meng, S. Wu, Y. Qin, Green electrochemical modification of RVC foam electrode and improved H2O2 electrogeneration by applying pulsed current for pollutant removal, Environmental Science and Pollution Research 25 (2018) 6015-6025.

W. Zhou, L. Rajic, Y. Zhao, J. Gao, Y. Qin, A.N. Alshawabkeh, Rates of H2O2 electrogene-ration by reduction of anodic O2 at RVC foam cathodes in batch and flow-through cells, Electrochimica Acta 277 (2018) 185-196.

M. Zarei, D. Salari, A. Niaei, A. Khataee, Peroxi-coagulation degradation of C.I. Basic Yellow 2 based on carbon-PTFE and carbon nanotube-PTFE electrodes as cathode, Electrochimica Acta 54 (2009) 6651-6660.

J. Choi, S.H. Hwang, J. Jang, J. Yoon, High yield hydrogen peroxide production in a solid polymer electrolyte electrolyzer with a carbon fiber coated mesh substrate, Electro-chemistry Communications 30 (2013) 95-98.

L. Zhou, Z. Hu, C. Zhang, Z. Bi, T. Jin, M. Zhou, Electrogeneration of hydrogen peroxide for electro-Fenton system by oxygen reduction using chemically modified graphite felt cathode, Separation and Purification Technology 111 (2013) 131-136.

J. C. Crittenden, R. R. Trussell, D. W. Hand, K. J. Howe, G. Tchobanoglous, MWH’s Water Treatment, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2012.

G. R. Agladze, G. S. Tsurtsumia, B.-I. Jung, J.-S. Kim, G. Gorelishvili, Comparative study of chemical and electrochemical Fenton treatment of organic pollutants in wastewater, Journal of Applied Electrochemistry 37 (2007) 985-990.

J. B. A. Arends, S. van Denhouwe, W. Verstraete, N. Boon, K. Rabaey, Enhanced disinfection of wastewater by combining wetland treatment with bioelectrochemical H2O2 production, Bioresource Technology 155 (2014) 352-358.



How to Cite

Hamal, K. ., Koirala, D., May, J. ., Dalbec, F. ., Nicholas, N. ., & Cheng, I. F. (2022). An oxygen reduction reaction electrocatalyst tuned for hydrogen peroxide generation based on a pseudo-graphite doped with graphitic nitrogen: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(5), 1009–1023.



Electrochemical Science