Elevated temperature erosion of abradable seal coating

Original scientific paper

Authors

DOI:

https://doi.org/10.5599/jese.1388

Keywords:

Abradable coating, high-temperature erosion, erosive wear, plasma spraying technique, mass-loss
Graphical Abstract

Abstract

Abradable coatings are essentially sealing materials and are deposited by thermal spray techniques. The main function of these coatings is to control the clearance of the gas path of the gas turbine engines. The abradable coating prevents turbine blade damage by abrading itself when there is an offset or vibration during turbine operation. Since the coating is meant to abrade, the preferred coating material is relatively softer than the turbine blade material. As these coatings are prone to solid particle erosion at high temperatures, the erosion response of these coatings at elevated temperatures needs to be investigated. In order to achieve this objective, MCrAlY boron nitride polymer coating was deposited employing an air plasma spraying technique on a Ni-base alloy substrate. The important features of the microstructure and mechanical properties of the coating were examined, and the coating was subjected to erosion at various temperatures under different erosion conditions. The results indicate a ductile erosion behaviour for an abradable top coat. The erosion rate increases with the temperature of the coating. The detailed results of the investigation are presented, and the erosion mechanisms are studied.

Downloads

Download data is not yet available.

References

Y. Cui, M. Guo, C. Wang, Z. Tang, L. Cheng, Surface and Coatings Technology 394 (2020) 125915. https://doi.org/10.1016/j.surfcoat.2020.125915

S. Singh, K. Goyal, R. Bhatia, Journal of Electrochemical Science and Engineering 12(5) (2022) 819-828. https://doi.org/10.5599/jese.1278

M. Roy, J.P. Davim (Eds.), Thermal Sprayed Coatings and their Tribological Properties, IGI Global, 2015. https://doi.org/10.4018/978-1-4666-7489-9

J. E. Jońca, B. Malard, J. Soulié, T. Sanviemvongsak, S. Selezneff, A. Vande Put, Corrosion Science 153 (2019) 170–177. https://doi.org/10.1016/j.corsci.2019.02.030

X. M. Sun, L. Z. Du, H. Lan, H. F. Zhang, R. Y. Liu, Z. G. Wang, S. G. Fang, C. B. Huang, Z. A. Liu, W. G. Zhang, Surface and Coatings Technology 397 (2020) 126045. https://doi.org/10.1016/j.surfcoat.2020.126045

M. Roy, M. Subramaniyam, G. Sundararajan, Tribology International 25 (1992) 271–280. https://doi.org/10.1016/0301-679X(92)90064-T

M. Roy, K.K. Ray, G. Sundararajan, Oxidation of Metals 51 (1999) 251–272. https://doi.org/10.1023/A:1018870606617

Y. Maozhong, H. Baiyun, H. Jiawen, Wear 252 (2002) 9–15. https://doi.org/10.1016/S0043-1648(01)00681-0

M. Shadab Siddiqui, P. Joshi, N. Nayak, K. Vidyasagar, Advanced Materials Letters 5(9) (2014) 506–510. https://doi.org/10.5185/amlett.2014.588

S. Sharsar, R. Bhagat, N. Kapoor, International Journal of Research in Mechanical Engineering & Technology 4 (2014) 4. http://www.ijrmet.com/vol4issue2/shekhar-sharsar.pdf

A. Kumar, Y. Sharma, S. Malik, JRPS International Journal for Research Publication & Seminar 05 (2014) 7.

M. Roy, Transactions of the Indian Institute of Metals 53 (2000) 623–638. https://www.researchgate.net/publication/285944502

A. W. Ruff, L.K. Ives, Wear 35 (1975) 195–199. https://doi.org/10.1016/0043-1648(75)90154-4

M. Roy, K. K. Ray, G. Sundararajan, Metallurgical and Materials Transactions A 32 (2001) 1431–1451. https://doi.org/10.1007/s11661-001-0232-5

M. Roy, Journal of Thermal Spray Technology 11 (2002) 393–399. https://doi.org/10.1361/105996302770348790

G. Sundararajan, P. G. Shewmon, Wear 84 (1983) 237–258. https://doi.org/10.1016/0043-1648(83)90266-1

M. Roy, Y. Tirupataiah, G. Sundararajan, Materials Science and Technology 11 (1995) 791–797. https://doi.org/10.1179/mst.1995.11.8.791

M. Roy, K. K. Ray, G. Sundararajan, Wear 217 (1998) 312–320. https://doi.org/10.1016/S0043-1648(98)00139-2

M. Roy, Journal of Physics D 39 (2006) R101–R124. https://doi.org/10.1088/0022-3727/39/6/R01

R. J. K. Wood, M. Roy, Tribology of Thermal Sprayed Coating, in: Surface Engineering for Enhanced Performance against Wear, M. Roy (Ed.), Springer, Vienna, 2013, pp. 1-43. https://doi.org/10.1007/978-3-7091-0101-8_1

M. Roy, Y. Tirupataiah, G. Sundararajan, Materials Science and Engineering A 165 (1993) 51–63. https://doi.org/10.1016/0921-5093(93)90626-P

S. G. Sapate, M. Roy, Thermal Sprayed Coatings and Their Tribological Performances (2015) 193–226. https://doi.org/10.4018/978-1-4666-7489-9.ch007

B. Malvi, M. Roy, Journal of Thermal Spray Technology 30 (2021) 1028–1037. https://doi.org/10.1007/s11666-021-01189-9

S. Sarkar, V.G. Sekharan, R. Mitra, M. Roy, Tribology Transactions 52(6) (2009) 777-787. https://doi.org/10.1080/10402000903097411

P. Mukhopadhyay, M. Srinivas, M. Roy, Materials Characterization 113 (2016) 43–51. https://doi.org/10.1016/j.matchar.2016.01.008

Published

11-08-2022

How to Cite

Malvi, B., & Roy, M. (2022). Elevated temperature erosion of abradable seal coating: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(5), 889–899. https://doi.org/10.5599/jese.1388

Issue

Section

Electrodeposition and coatings