Microhardness and biological behavior of AZ91D-nHAp surface composite for bio-implants

Original scientific paper





Magnesium AZ91D, nano metal matrix surface composite, nano-hydroxyapatite, friction stir processing
Graphical Abstract


In the present research work, friction stir processing (FSP) has been adopted for the fabri­cation of nano-hydroxyapatite (nHAP) reinforced AZ91-D Mg-alloy matrix surface com­posite (NMMSC). The NMMSC was developed to replace the conventional bio-implants materials for short-term usage. The NMMSC has been prepared by adding nHAp rein­forcement in 12.5 % volumetric proportion in the AZ91-D alloy using the grooving technique followed by FSP. The FSP parameters were selected, such as the tool rotation of 1000 rpm, 50 mm/min transverse speed, and 5 multi-passes. The base alloy, normal FSPed, and fabricated NMMSC were characterized to study their micro-hardness values and biological performances. Improvement in microhardness value in the developed composites was observed due to the smaller grain size as a result of the dynamic recrystal­lization phenomenon. The antibacterial properties of FSPed and NMMSC specimens tested against Staphylococcus aureus, Candida albicans, and Aspergillus fumigatus were found to be superior as compared to the PM. The cytotoxicity of the FSPed & NMMSC specimens expressed as cell viability using MTT assay shows negligible toxicity as compared to PM and the cell viability was insignificantly decreased as the incubation period was extended. The microhardness and biological performance of NMMSC have been improved due to the grain refinement by FSP and the presence of nHAp reinforcement in the material.


Download data is not yet available.


F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. M. Lindenberg, Biomaterials 26 (2005) 3557-3563. https://doi.org/10.1016/j.biomaterials.2004.09.049

G. L. Song, Corrosion Science 49 (2007) 1696-1701. https://doi.org/10.1016/j.corsci.2007.01.001

F. Witte, N. Hort, C. Vogt, S. Cohen, K. U. Kainer, R. Willumeit, F. Feyerabend, Current Opinion in Solid State & Materials Science 12 (2008) 63-72. https://doi.org/10.1016/j.cossms.2009.04.001

F. Witte, J. Fischer, J. Nellesen, H.A. Crostack, V. Kaese, A. Pisch, F. Beckmann, H. Windhagen, Biomaterials 27 (2006) 1013-1018. https://doi.org/10.1016/j.biomaterials.2005.07.037

H. Wang, Y. Estrin, Z. Zu´ berova´, Materials Letters 62 (2008) 2476-2479. https://doi.org/10.1016/j.matlet.2007.12.052

Y. Wang, M. Wei, J. Gao, J. Hu, Y. Zhang, Materials Letters 62 (2008) 2181-2184. https://doi.org/10.1016/j.matlet.2007.11.045

X. Zhao, L.L. Shi, J. Xu, Materials Science and Engineering C 33 (2013) 3627-3637. https://doi.org/10.1016/j.msec.2013.04.051

H. Hornberger, S. Virtanen, A.R. Boccaccini, Acta Biomaterialia 8 (2012) 2442-2455. https://doi.org/10.1016/j.actbio.2012.04.012

S. Keim, J.G. Brunner, B. Fabry, S. Virtanen, Journal of Biomedical Materials Research Part B: Applied Biomaterials 96B (2011) 84-90. https://doi.org/10.1002/jbm.b.31742

T. S. N. Sankara Narayanan, I. S. Park, M. H. Lee, Progress in Materials Science 60 (2014) 1-71. https://doi.org/10.1016/j.pmatsci.2013.08.002

S. Shaylin, J. D. George, Acta Biomaterialia 8 (2012) 20-30. https://doi.org/10.1016/j.actbio.2011. 10.016

J. J. Martínez Sanmiguel, D. G. Zarate-Triviño, R. Hernandez-Delgadillo, A. L. Giraldo-Betancur, N. Pineda-Aguilar, S. A. Galindo-Rodríguez, M. A. Franco-Molina, S. P. Hernández-Martínez, C. Rodríguez-Padilla, Journal of Biomaterials Applications 33 (2019)1314-1326. https://doi.org/10.1177/0885328219835995

D. Franco, G. Calabrese, S. Petralia, G. Neri, C. Corsaro, L. Forte, S. Squarzoni, S. Guglielmino, F. Traina, E. Fazio, S. Conoci, Molecules 26 (2021) 1099. https://doi.org/10.3390/molecules26041099

Q. Ge, D. Dellasega, A. G. Demir, M. Vedani, Acta Biomaterialia 9 (2013) 8604-8610. https://doi.org/10.1016/j.actbio.2013.01.010

V. V. Ramalingam, P. Ramasamy, M. Govindaraju, S. Priyadharshini, Materials Research Express 6(8) (2019) 085401. https://doi.org/10.1088/2053-1591/ab1ded

W. Suchank, M. Yoshimura, Journal of Materials Research 13 (1998) 94-117. https://doi.org/10.1557/JMR.1998.0015

R. S. Mishra, Z. Y. Ma, Materials Science and Engineering 50(1-2) (2005) 1-78. https://doi.org/10.1016/j.mser.2005.07.001

F. Witte, F. Feyerabend, P. Maier, J. Fischer, M. Stormer, C. Blawert, W. Dietzel, N. Hort, Biomaterials 28 (2007) 2163-2174. https://doi.org/10.1016/j.biomaterials.2006.12.027

S. Lamkhao, M. Phaya, C. Jansakun, N. Chandet, K. Thongkorn, G. Rujijanagul, P. Bangrak, C. Randorn, Scientific Reports 9 (2019) 4015. https://doi.org/10.1038/s41598-019-40488-8

R. S. Mishra, M. W. Mahoney, S. X. McFadden, N. A. Mara, A.K. Mukherjee, Scripta Materialia 42 (2000) 163-168. https://doi.org/10.1016/S1359-6462(99)00329-2

R.S. Mishra, Z.Y. Ma, I. Charit, Materials Science and Engineering A 341 (2003) 307-310. https://doi.org/10.1016/S0921-5093(02)00199-5

Y. Morisada, H. Fujii, T. Nagaoka, K. Nogi, M. Fukusumi, Composites A 38 (2007) 2097-2101. https://doi.org/10.1016/j.compositesa.2007.07.004

W.B. Lee, C.Y. Lee, M.K. Kim, J.I. Yoon, Y.J. Kim, Y.M. Yoen, S.B. Jung, Composite Science and Technology 66 (2006) 1513-1520. https://doi.org/10.1016/j.compscitech.2005.11.023

T.J. Chen, Z.M. Zhu, Y.D. Li, Y. Ma, Y. Hao, Transactions of Nonferrous Metals Society of China 20 (2010) 34-42. https://doi.org/10.1016/S1003-6326(09)60093-5

C.J. Lee, J.C. Huang, P.J. Hsieh, Scripta Materialia 54 (2006) 1415-1420. https://doi.org/10.1016/j. scriptamat.2005.11.056

M. Azizieh, A.H. Kokabi, P. Abachi, Materials & Design 32 (2011) 2034-2041. https://doi.org/10.1016/j. matdes.2010.11.055

P. Asadi, G. Faraji, A. Masoumi, G.M. Besharati, Metallurgical and Materials Transactions A 42(9) (2011) 2820-2832. https://doi.org/10.1007/s11661-011-0698-8

M2-A9 Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard 9th edition, Wayne, PA: CLSI (2006).

T. Mosmann, Journal of Immunological Methods 65 (1983) 55-63. https://doi.org/10.1016/0022-1759(83)90303-4

R. Kumar, D. Bhandari, K. Goyal, Journal of Electrochemical Science and Engineering 12(4) (2022) 651-666. http://dx.doi.org/10.5599/jese.1190

N. Rameshbabu, K. Prasad Rao, T.S. Sampath Kumar, Journal of Materials Science 40 (2005) 6319-6323. https://doi.org/10.1007/s10853-005-2957-9

R. S. Mishra, M. W. Mahoney, Friction stir welding and processing, ASM International (2007) 3-55. https://doi.org/10.1361/fswp2007p001

H. Sakaki, T. Nakanishi, A. Tada, W. Miki, S. Komemushi, Journal of Bioscience and Bioengineering 92 (2001) 294-297. https://doi.org/10.1016/S1389-1723(01)80265-6

J. B. Johnston, J. G. Nickerson, J. Daroszewski, T. J. Mogg, G. W. Burton, PLoS One 9 (2014) e111346. https://doi.org/10.1371/journal.pone.0111346



18-05-2022 — Updated on 18-05-2022

How to Cite

Kundu, S., & Thakur, L. (2022). Microhardness and biological behavior of AZ91D-nHAp surface composite for bio-implants: Original scientific paper. Journal of Electrochemical Science and Engineering, 13(1), 137–147. https://doi.org/10.5599/jese.1316