Synthesis of porous indium phosphide with nickel oxide crystallites on the surface

Original scientific paper

  • Yana Suchikova Berdyansk State Pedagogical University, Berdyansk, Ukraine https://orcid.org/0000-0003-4537-966X
  • Ihor Bohdanov Berdyansk State Pedagogical University, Berdyansk, Ukraine
  • Sergii Kovachov Berdyansk State Pedagogical University, Berdyansk, Ukraine
  • Andriy Lazarenko Berdyansk State Pedagogical University, Berdyansk, Ukraine
  • Iryna Bardus Berdyansk State Pedagogical University, Berdyansk, Ukraine https://orcid.org/0000-0002-8682-7791
  • Alma Dauletbekova L. N. Gumilyov Eurasian National University, Nur-Sultan 010008, Kazakhstan https://orcid.org/0000-0003-0048-0959
  • Inesh Kenzhina Kazakh-British Technical University, Almaty 050000, Kazakhstan
  • Anatoli I. Popov L. N. Gumilyov Eurasian National University, Nur-Sultan 010008, Kazakhstan and Institute of Solid State Physics, University of Latvia, Riga LV-1063, Latvia https://orcid.org/0000-0003-2795-9361
Keywords: nickel oxalate, annealing, electrochemical etching, coating, EDX spectrum
Graphical Abstract

Abstract

In this paper, the technology of synthesis of crystallites and nanocrystallites of nickel oxide on the surface of indium phosphide is described. This technology consists of two stages. In the first stage, porous indium phosphide is formed on the surface of a single crystal of indium phosphide. The formation of such a porous layer provides better adhesion to the surface of the sample. The second stage involves the preparation of the solution that contains nickel ions, application of this solution to the surface of porous indium phosphide, followed by annealing. As a result, NiO/NiC2O4∙2H2O/por-
-InP/mono-InP structure was formed. Surface morphological parameters were obtained using scanning electron microscopy and EDX-analysis of chemical composition. Chemical analysis confirmed the partial formation of nickel oxide from nickel oxalate layer by thermal annealing. Using scanning electron microscopy, it has been established that the crystallites have a large scatter in diameter, but they may be divided into three characteristic groups: macro-; meso- and nano­crystallites. Such structures may find prospects for application in electrochemical capacitors and lithium-ion batteries. Further research is needed for methodology improvement to obtain structures with predetermined controlled properties.

Downloads

Download data is not yet available.

References

S. W. Kim, S. Kwon, Y. K. Kim, Nanomaterials 11(2) (2021) 288. https://doi.org/10.3390/nano11020288

L. Yang, J. Wei, Z. Ma, P. Song, J. Ma, Y. Zhao, X. Wang, Nanomaterials 9(12) (2019) 1789. https://doi.org/10.3390/nano9121789

E. Shablonin, A. I. Popov, A. Lushchik, A. Kotlov, S. Dolgov, Physica B 477 (2015) 133-136. https://doi.org/10.1016/j.physb.2015.08.032

E. Feldbach, E. Tõldsepp, M. Kirm, A. Lushchik, K. Mizohata, J. Räisänen, Optical Materials 55 (2016) 164-167. https://doi.org/10.1016/j.optmat.2019.109308

V. Pankratov, D. Millers, L. Grigorjeva, A. O. Matkovskii, P. Potera, I. Pracka, T. Łukasiewicz, Optical Materials 22(3) (2003) 257-262. https://doi.org/10.1016/S0925-3467(02)00285-9

L. Grigorjeva, D. K. Millers, V. Pankratov, R. T. Williams, R. I. Eglitis, E. A. Kotomin, G. Borstel, Solid State Communications 129(11) (2004) 691-696. https://doi.org/10.1016/j.ssc.2003.12.031

V. Serga, R. Burve, A. Krumina, M. Romanova, E. A. Kotomin, A. I. Popov, Crystals 11(4) (2021) 431. https://doi.org/10.3390/cryst11040431

V. Serga, R. Burve, A. Krumina, V. Pankratova, A. I. Popov, V. Pankratov, Journal of Materials Research and Technology 13 (2021) 2350-2360. https://doi.org/10.1016/j.jmrt.2021.06.029

Z. Meng, B. Zhu, Y. Zhang, L. Luo, Y. Zhang, Chinese Journal of Tissue Engineering Research 26(22) (2022) 2095-4344. https://doi.org/10.12307/2022.277

H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, S. Seok, Nature 598(7881) (2021) 444-450. https://doi.org/10.1038/s41586-021-03964-8

I. V. Rogozin, Thin Solid Films 517(15) (2009) 4318-4321. https://doi.org/10.1016/j.tsf.2008.12.002

H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, S. Seok, Nature 598(7881) (2021) 444-450. https://doi.org/10.1038/s41586-021-03964-8

A. Luchechko, V. Vasyltsiv, L. Kostyk, O.Tsvetkova, A. I. Popov, Nuclear Instruments and Methods in Physics Research B 441 (2019) 12-17. https://doi.org/10.1016/j.nimb.2018.12.045

A. Usseinov, Z. Koishybayeva, A. Platonenko, J. Purans, A. I. Popov, Materials 14(23) (2021) 7384. https://doi.org/10.3390/ma14237384

A. Luchechko, Y. Zhydachevskyy, S. Ubizskii, O. Kravets, A. I.Popov, U. Rogulis, E. Elsts, E. Bulur, A. Suchocki, Scientific Reports 9(1) (2019) 9544. https://doi.org/10.1038/s41598-019-45869-7

H. Klym, I. Karbovnyk, A. Luchechko, Y. Kostiv, V. Pankratova, A. I. Popov, Crystals 11(12) (2021) 1515. https://doi.org/10.3390/cryst11121515

T. T. Le Dang, M. Tonezzer, Procedia Engineering 120 (2015) 427-434. https://doi.org/10.1016/j.proeng.2015.08.658

T. N. J. I. Edison, R. Atchudan, Y. R. Lee, Electrochimica Acta 283 (2018) 1609-1617. https://doi.org/10.1016/j.electacta.2018.07.101

Z. Alhashem, C. Awada, F. Ahmed, A.H. Farha, Crystals 11(6) (2021) 613. https://doi.org/10.3390/cryst11060613

X. Chen, Y. Zhao, W. Li, X. Zhang, Y. Li, Optical Materials 124 (2022) 111959. https://doi.org/10.1016/j.optmat.2021.111959

S. Vambol, I. Bogdanov, V. Vambol, O. Hurenko, S. Onishchenko, Eastern-European Journal of Enterprise Technologies 3(5-87) (2017) 37-44. https://doi.org/10.15587/1729-4061.2017.104039

Y. O. Suchikova, I. T. Bogdanov, S. S. Kovachov, Archives of Materials Science and Engineering 98(2) (2019) 49-56. https://doi.org/10.5604/01.3001.0013.4606

J. A. Suchikova, V. V. Kidalov, G. A. Sukach, Functional Materials 17(1) (2010) 131-134. http://functmaterials.org.ua/contents/17-1/fm171-24.pdf

Ya. A. Suchikova, V. V. Kidalov, G .A. Sukach, Journal of Nano- and Electronic Physics 1(4) (2009) 111-118. https://jnep.sumdu.edu.ua/download/numbers/2009/4/articles/en/jnep_eng_2009_V1_N4_111-118.pdf

B. R. Shen, H. Shen, Y. X. Pan, T. F. Chen, X. E. Cai, Zeitschrift für Physikalische Chemie 2015 (2001) 1413. https://doi.org/10.1524/zpch.2001.215.11.1413

B. Małecka, A. Małecki, E. Drożdż-Cieśla, L. Tortet, P. Llewellyn, F. Rouquerol, Thermochimica Acta 466(1-2) (2007) 57-62. https://doi.org/10.1016/j.tca.2007.10.010

A. A. Najim, F.M. Hassan, H. S. Rasheed, H. Ismail, H.H. Darwoysh, Optical Materials 121 (2021) 111602. https://doi.org/10.1016/j.optmat.2021.111602

T. T. L. Dang, M. Tonezzer, V. H. Nguyen, Journal of Nanomaterials 2015 (2015) 785856 https://doi.org/10.1155/2015/785856

D.A. Venter, J.H. O'Connell. Nuclear Instruments and Methods in Physics Research B 473 (2020) 43-47. https://doi.org/10.1016/j.nimb.2020.04.004

X. H. Huang, J. P. Tu, X. H. Xia, X. L. Wang, J. Y. Xiang, L. Zhang, Y. Zhou, Journal of Power Sources 188(2) (2009) 588-591. https://doi.org/10.1016/j.jpowsour.2008.11.111

J. Zhao, Y. Tian, A. Liu, L. Song, Z. Zhao, Materials Science in Semiconductor Processing 96 (2019) 78-90. https://doi.org/10.1016/j.mssp.2019.02.024

H. Chen, H. Ma, H. Xia, Y. Chen, L. Zhang, Optical Materials 122 (2021) 111639. https://doi.org/10.1016/j.optmat.2021.111639

M. Velazquez-Rizo, P. Kirilenko, D. Iida, Z. Zhuang, K. Ohkawa, Crystals 12(2) (2022) 211. https://doi.org/10.3390/cryst12020211

Published
06-07-2022
Section
Coatings