Wear behaviour and microstructural characteristics of cold sprayed nickel-alumina coatings on boiler steel

Original scientific paper

Authors

  • Deepak Dhand Department of Mechanical Engineering, Punjabi University, Patiala 147002, India and Department of Mechanical and Production Engineering, Guru Nanak Dev Engineering College, Ludhiana 141006, India https://orcid.org/0000-0001-5147-2882
  • Parlad Kumar Department of Mechanical Engineering, Punjabi University, Patiala 147002, India and Department of Mechanical and Production Engineering, Guru Nanak Dev Engineering College, Ludhiana 141006, India https://orcid.org/0000-0002-7331-5789
  • Jasmaninder Singh Grewal Department of Mechanical and Production Engineering, Guru Nanak Dev Engineering College, Ludhiana 141006, India

DOI:

https://doi.org/10.5599/jese.1270

Keywords:

Cermet coatings, cold spray, sliding wear, pin-on-disk testing, tribology, morphology
Graphical Abstract

Abstract

There is an excessive material loss in steel components due to sliding wear in different industrial applications. The SS 316 steel is extensively used in the power generation industry for boilers, induction fans, ducts, etc., and counter-high sliding wear. The studies have shown that protective coatings deposited by thermal spray methods successfully control the wear and enhance the service life of steels. In this work, the nickel-alumina coating was deposited on SS 316 by cold spray technique to understand the effectiveness of coatings in resisting wear. The wear behavior of coatings was analyzed by conducting the wear test on a pin-on-disc apparatus at different loads, i.e., 30, 40 and 50 N keeping the speed constant. The wear trends and variation in friction coefficient due to wear were observed. The mechanical and microstructural characterization was done by FE-SEM/EDS and XRD techniques. The coatings were found effective in resisting the wear on SS 316 steel. The results indicate that the wear rate of coatings increased with an increase in normal load.

Downloads

Download data is not yet available.

References

S. Kumar, M. Kumar, A. Handa, Engineering Failure Analysis 94 (2018) 379-395. http://doi.org/10.1016/j.engfailanal.2018.08.004

A. V. Levy, Wear 138(1–2) (1990) 111-123. http://doi.org/10.1016/0043-1648(90)90171-6

E. Raask, Wear 13(4–5) (1969) 301-315. http://doi.org/10.1016/0043-1648(69)90252-X

D. Rezakhani, Anti-Corrosion Methods and Materials 54(4) (2007) 237-243. http://doi.org/10.1108/000355907107-2384

J. Mehta, V. K. Mittal, P. Gupta, Journal of Applied Science and Engineering 20(4) (2017) 445-452. http://doi.org/10.6180/jase.2017.20.4.05

R. J. K. Wood, J. A. Wharton, 11-Coatings for tribocorrosion protection, in Tribocorrosion of Passive Metals and Coatings, D. Landolt, S. Mischler, Ed(s)., Woodhead Publisher, UK, 2011 296-333. http://doi.org/10.1533/9780857093738.2.296

D. Dhand, P. Kumar, J. S. Grewal, Corrosion Reviews 39(3) (2021) 243-268. https://doi.org/10.1515/corrrev-2020-0043

L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Second Edition, Published by John Wiley & Sons Ltd, UK, 2008 1-626. http://doi.org/ 10.1002/9780470754085

H. Singh, T. S. Sidhu, S. B. S. Kalsi, Frattura Ed Integrità Strutturale 22 (2012) 69-84. http://doi.org/10.3221/IGF-ESIS.22.08

M. F. Smith, 3-Comparing cold spray with thermal spray coating technologies, in The Cold Spray Materials Deposition Process: Fundamentals and Applications, V. K. Champagne, Ed., Woodhead Publisher, UK, 2007 43-61. http://doi.org/10.1533/9781845693787.1.43

H. Koivuluoto, J. Lagerbom, M. Kylmälahti, P. Vuoristo, Journal of Thermal Spray Technology 17 (2008) 721-727. http://doi.org/10.1007/s11666-008-9245-6

X. Guo, G. Zhang, W. Li, Y. Gao, H. Liao, C. Coddet, Applied Surface Science 255(6) (2009) 3822-3828. http://doi.org/10.1016/j.apsusc.2008.10.041

M. Ashokkumar, D. Thirumalaikumarasamy, P. Thirumal, R. Barathiraja, Materials Today: Proceedings 46(17) (2021) 7581-7587. http://doi.org/10.1016/j.matpr.2021.01.664

B. V. Padmini, M. Mathapati, H. B. Niranjan, P. Sampathkumaran, S. Seetharamu, M. R. Ramesh, N. Mohan, Materials Today: Proceedings 27(3) (2019) 1951–1958. http://doi.org/10.1016/j.matpr.2019.09.025

M. A. Khan, S. Sundarrajan, M. Duraiselvam, S. Natarajan, A. Senthil, A. S. Kumar, Surface Engineering 33(1) (2017) 35-41. http://doi.org/10.1179/1743294415Y.0000000087

V. Higuera Hidalgo, J. Belzunce Varela, A. Carriles Menéndez, S. Poveda Martínez, Wear 247(2) (2001) 214-222. http://doi.org/10.1016/S0043-1648(00)00540-8

V. Higuera Hidalgo, J. Belzunce Varela, J. Martínez de la Calle, A. Carriles Menéndez, Surface Engineering 16(2) (2000) 137-142. http://doi.org/10.1179/026708400101517035

D. Aussavy, S. Costil, O. El Kedim, G. Montavon, A. F. Bonnot, Journal of Thermal Spray Technology 23(1–2) (2014) 190–196. http://doi.org/10.1007/s11666-013-9999-3

S. S. Chatha, H. S. Sidhu, B. S. Sidhu, Surface and Coatings Technology 206(19–20) (2012) 3839-3850. http://doi.org/10.1016/j.surfcoat.2012.01.060

T. Peat, A. Galloway, A. Toumpis, P. McNutt, N. Iqbal, Applied Surface Science 396 (2017) 1635-1648. http://doi.org/10.1016/j.apsusc.2016.10.156

D. Dhand, J.S. Grewal, P. Kumar, Surface Topography: Metrology and Properties 9(4) (2021) 045056. https://doi.org/10.1088/2051-672X/ac4402

V. N. V. Munagala, S. Bessette, R. Gauvin, R. R. Chromik, Wear 450–451 (2020) 203268. http://doi.org/10.1016/j.wear.2020.203268

J. M. Shockley, S. Descartes, E. Irissou, J.-G. Legoux, R. R. Chromik, Tribology Letters 54(2) (2014) 191-206. http://doi.org/10.1007/s11249-014-0326-z

Downloads

Published

06-05-2022

How to Cite

Dhand, D., Kumar, P., & Grewal, J. S. (2022). Wear behaviour and microstructural characteristics of cold sprayed nickel-alumina coatings on boiler steel: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(5), 841–849. https://doi.org/10.5599/jese.1270

Issue

Section

Electrodeposition and coatings