Cerium-tricalcium phosphate coating for 316L stainless steel in simulated human fluid: Experimental, biological, theoretical, and electrochemical investigations

Original scientific paper

Authors

  • Hiba A. Abdulaah Department of Materials Eng., University of Technology, Baghdad, Iraq
  • Ahmed M. Al-Ghaban Department of Materials Eng., University of Technology, Baghdad, Iraq
  • Rana A. Anaee Department of Materials Eng., University of Technology, Baghdad, Iraq https://orcid.org/0000-0003-1021-0127
  • Anees A. Khadom Department of Chemical Engineering, College of Engineering, University of Diyala, Diyala, Iraq https://orcid.org/0000-0003-2284-6325
  • Mustafa M. Kadhim Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq; College of Technical Engineering, The Islamic University, Najaf, Iraq and Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq https://orcid.org/0000-0001-5272-1801

DOI:

https://doi.org/10.5599/jese.1257

Keywords:

Biomaterials, tricalcium phosphate, Ce substitution, thin film sputtering, stainless steel
Graphical Abstract

Abstract

Tricalcium phosphate (TCP) has many advantages in biomedical applications, especially in teeth and bones, and therefore many researchers focused on enhancing the properties of this material by different methods. Because of the importance of the cerium in repairing the performance of cells in the human body, this work aims to substitute the cerium in TCP structure to give better properties. Coating of Ce/TCP on SS 316L was applied by radio frequ­ency (RF) sputtering technique. This coating was characterized by XRD, FESEM/EDS with EDS mapping, AFM, and electrochemical analysis. These techniques confirm the pre­sence of Ce with TCP in the deposited layer and the SEM gave a more compact layer with higher rough­ness and lower average diameter. EDS mapping shows the presence of sug­gested metal ions in the coating. A theoretical study by DFM was done to illustrate the sub­stitution of Ce in the lattice structure and stable sites for accommodation. Electro­chemical studies showed that the presence of the coating layer improves corrosion resistance with 91 % protection efficiency.

Downloads

Download data is not yet available.

References

H. Qiao, H. Xiao, Y. Huang, C. Yuan, X. Zhang, X. Bu, Z. Wang, S. Han, L. Zhang, S. Su, X. Zhang, Surface and Coatings Technology 364 (2019) 170-179. https://doi.org/10.1016/j.surfcoat.2019.02.089

D. Zhang, H. Zhang, J. Wen, J. Cao, IOP Conference Series: Earth and Environmental Science 233(2) (2019) 022007. https://doi.org/10.1088/1755-1315/233/2/022007

W. Aperador, E. Ruíz, G. Orozco Hernández, J.C. Caicedo, C. Ameya. MOJ Applied Bionics and Biomechanics 2(2) (2018) 157-162. https://doi.org/10.15406/mojabb.2018.02.00059

T. Narushima, K. Ueda, T. Goto, H. Masumoto, T. Katsube, H. Kawamura, Ch. Ouchi, Y. Iguchi, Materials Transactions 46(10) (2005) 2246-2252. https://doi.org/10.2320/matertrans.46.2246

A.R. Boyd, B.J. Meenan, N.S. Leyland, Surface and Coatings Technology 200(20-21) (2006) 6002-6013. http://dx.doi.org/10.1016%2Fj.surfcoat.2005.09.032

D. K. Pattanayak, R. Dash, R. C. Prasad, B. T. Rao, T. R. Rama Mohan, Materials Science and Engineering: C 27(4) (2007) 684-690. https://doi.org/10.1016/j.msec.2006.06.021

J. A. Toque, M. Hamdi, A. Ide-Ektessabi I. Sopyan, International Journal of Modern Physics 23(31) (2009) 5811-5818. https://doi.org/10.1142/S021797920905479X

J.A. Toque, M.K. Herliansyah, M. Hamdi, A. Ide­Ektessabi, I. Sopyan, Journal of the Mechanical Behavior of Biomedical Materials 3(4) (2010) 324-330. http://eprints.um.edu.my/id/eprint/14727

K.-Y. Hung, H.-C. Lai, H.-P. Feng, Coatings 7(8) (2017) 126. https://doi.org/10.3390/coatings7080126

M. Montazerian, F. Hosseinzadeh, C. Migneco, M. Fook, F. Baino, Ceramics International 48(7) (2022) 8987-9005. https://doi.org/10.1016/j.ceramint.2022.02.055

D. S. Morais, S. Fernandes, P. S. Gomes, M. H. Fernandes, P. Sampaio, M. P. Ferraz, J. D. Santos, M. A. Lopes, N. S. Hussain, Biomedical Materials 10(5) (2015) 055008. https://doi.org/10.1088/1748-6041/10/5/055008

D. Sivaraj, K. Vijayalakshmi, Ultrasonics Sonochemistry 59 (2019) 104730. https://doi.org/10.1016/j.ultsonch.2019.104730

A. M. A. Bakheet, M. A. Saeed, R. Sahnoun, A. R. M. Isa, L. Mohammed, T. Mahmood, Jurnal Teknologi 78(3) (2016) 167-172. http://dx.doi.org/10.11113/jt.v78.7487

N. Matsumoto, K. Yoshida, K. Hashimoto, Y. Toda, Journal of the Ceramic Society of Japan 118(1378) (2010) 451-457. https://doi.org/10.2109/jcersj2.118.451

E. Boanini, M. Gazzano, C. Nervi, M. R. Chierotti, K. Rubini, R. Gobetto, A. Bigi, Journal of Functional Biomaterials 10(2) (2019) 20. https://doi.org/10.3390/jfb10020020

S. Adzila, M. Murad, I. Sopyan, Recent Patents on Materials Science 5(1) (2012) 18-47. http://dx.doi.org/10.2174/1874464811205010018

G. Silva, M. R. Baldissera, E. de Sousa Trichês, R. Cardoso, Materials Research 16(2) (2013) 304-309. https://doi.org/10.1590/S1516-14392012005000182

S. Basu, B. Basu, Journal of Asian Ceramic Societies 7(3) (2019) 265-283. https://doi.org/10.1080/21870764.2019.1636928

A. Bessière, R. A. Benhamou, G. Wallez, A. Lecointre, B. Viana, Acta Materialia 60(19) (2012) 6641-6649. https://doi.org/10.1016/j.actamat.2012.08.034

S. Kannan, F. Goetz-Neunhoeffer, J. Neubauer, S. Pina, P. M .C. Torres, J. M. F. Ferreira, Acta Biomaterialia 6(2) (2010) 571-576. https://doi.org/10.1016/j.actbio.2009.08.009

S. Kannan, F. Goetz-Neunhoeffer, J. Neubauer, J. M. F. Ferreira, Journal of the American Ceramic Society 94(1) (2011) 230-235. https://doi.org/10.1111/j.1551-2916.2010.04070.x

X. Yin, M. J. Stott, A. Rubio, Physical Review B 68(20) (2003) 205205. https://doi.org/10.1103/PhysRevB.68.205205

K. Yoshida, H. Hyuga, N. Kondo, H. Kita, M. Sasaki, M. Mitamura, K. Hashimoto, Y. Toda, Journal of the American Ceramic Society 89(2) (2006) 688-690. https://doi.org/10.1111/j.1551-2916.2005.00727.x

F. Kazemi, A. R. Kiasat, S. Ebrahimi, Synthetic Communications 33(6) (2006) 999-1004. https://doi.org/10.1081/SCC-120016364

P. Hohenberg, W. Kohn, Physical Review 136(3B) (1964) B864-B871.

I. Komaromi, J.M.J. Tronchet, Journal of Molecular Structure (Theochem) 395-396 (1997) 15-27.

R. E. Plata, D. A. Singleton, Journal of the American Chemical Society 137(11) (2015) 3811-3826. https://doi.org/10.1021/ja5111392.

E. A. Yaqo, R. A. Anee, M. H. Abdulmajeed, I. H. R. Tomi, M. M. Kadhim, ChemistrySelect 4(34) (2019) 9883-9892. http://dx.doi.org/10.1002/slct.201902398

X. Wang, Q. Zhang, S. Mao, W. Cheng, Minerals 9(8) (2019) 500. https://doi.org/10.3390/min9080500

©2022 by the authors; licensee IAPC, Zagreb, Croatia. This article is an open-access article

distributed under the terms and conditions of the Creative Commons Attribution license

(https://creativecommons.org/licenses/by/4.0/)

Downloads

Published

27-04-2022 — Updated on 27-04-2022

How to Cite

Abdulaah, H. A., Al-Ghaban, A. M., Anaee, R. A., Khadom, A. A., & Kadhim, M. M. (2022). Cerium-tricalcium phosphate coating for 316L stainless steel in simulated human fluid: Experimental, biological, theoretical, and electrochemical investigations: Original scientific paper. Journal of Electrochemical Science and Engineering, 13(1), 115–126. https://doi.org/10.5599/jese.1257

Issue

Section

Biomaterials