Mechanical and microstructural characterization of yttria-stabilized zirconia (Y2O3/ZrO2; YSZ) nanoparticles reinforced WC-10Co-4Cr coated turbine steel

Original scientific paper


  • Rajinder Kumar Mechanical Engineering, Yadavindra Department of Engineering, Punjabi University Guru Kashi Campus, Talwandi Sabo, Punjab, India
  • Deepak Bhandari Mechanical Engineering, Yadavindra College of Engineering, Talwandi Sabo, Punjab, India
  • Khushdeep Goyal Department of Mechanical Engineering, Punjabi University Patiala, Punjab, India



High velocity oxy fuel (HVOF), mechanical properties, microhardness, nanocomposite coating, porosity
Graphical Abstract


The aim of this paper is to investigate the WC-10Co-4Cr coatings reinforced with 5 % and 10 % of yttria-stabilized zirconia (Y2O3/ZrO2; YSZ) nanoparticles deposited on the CA6NM turbine steel by using the high-velocity oxy-fuel (HVOF) thermal spraying technique. In the HVOF technique, the hot jet of the semi-solid particles strikes against the workpiece and creates a layer of coating of varying thickness on the substrate material. The coatings fabricated with HVOF were analyzed by scanning electron microscope (SEM) / energy-dispersive x-ray spectroscopy (EDS). The phase identification of a crystalline material was made with the x-ray diffraction (XRD) technique. The mecha­nical properties in terms of porosity, surface roughness and microhardness of the nanocomposite coatings were also evaluated. The SEM/EDS analysis showed that dense and homogeneous coatings were developed by the reinforcement of YSZ nanoparticles. The peaks of XRD graphs of WC-10Co-4Cr coating reinforced with 5 and 10 % of YSZ nanoparticles revealed that the WC was present as a major phase and W2C, Co3W3C, Co, Co6W6C, Co6W and Y2O3/ZrO2 nanoparticles were observed as a minor phase. The porosity level decreased up to 42 and 56 % by the addition 5 and 10 % of YSZ nanoparticles as compared with conventional WC-10Co-4Cr coating. The surface roughness values for WC-10Co-4Cr conventional coating, 95 % (WC-10Co-4Cr) + 5 % YSZ and 90 % (WC-10Co-4Cr) + 10 % YSZ nanocomposite coated samples were found to be 5.03, 4.89 and 4.28 respectively. The nanocomposite coatings reinforced with 10 % YSZ nanoparticles exhibited the highest microhardness value (1278 HV). The WC-10Co-4Cr coatings reinforced with 10 % of YSZ nanoparticles resulted in low porosity, low surface roughness and high microhardness. During the coating process, the nanoparticles of YSZ flow into the pores and are dispersed in the gaps between the micrometric WC particles and provide a better shield to the substrate material. The WC-10Co-4Cr with 10 % of YSZ nanoparticles showed better results in terms of mecha­nical and microstructural properties during the investigation.


Download data is not yet available.


O. Edenhofer, M. R. Pichs, Y. P. Sokona, Special report of the intergovernmental panel on climate change Cambridge University Press New York (2011). ISBN 978-1-107-02340-6

H. Kumar, C. Chittosiya, V. N. Shukla, Science Direct Material Today 5 (2018) 6413-6420.

R. Kumar, D. Bhandari, K. Goyal, IOP Conference Series: Materials Science and Engineering 1033 (2021) 012064.

K. L. Choy, Progress in Materials Science 48(2) (2003) 157-170.

V. Javaheri, D. Porter, V. T. Kuokkala, Wear 408-409 (2018) 248-273.

M. A. Bukhaiti, S. M. Ahmed, F. M. F. Badran, K. M. Emara, Wear 262(9-10) (2007) 1187-1198.

H. Singh, K. Goyal, D. K. Goyal, Transactions of the Indian Institute of Metals 70(6) (2016) 1585-1592.

C. W. Lee, J. H. Han, J. Yoon, M. C. Shin, S. I. Kwun, Surface and Coating Technology 204(14) (2010) 2223–2229.

J. F. Santa, L. A. Espitia, J. A. Blanco, S. A. Romo, A. Toro, Wear 267(1-4) (2009) 160-167.

J. P. Singh, S. Kumar, S. K. Mohapatra, Wear 376-377 (2017) 1105-1111.

A. K. Maiti, N. Mukhopadhyay, R. Raman, Surface and Coating Technology 201(18) (2007) 7781-7788.

S. Hong, Y. Wu, Q. Wang, G. Ying, G. Li, W. Gao, B. Wang, W. Guo, Surface and Coating Technology 225 (2013) 85-91.

A. Kumar, A. Sharma, S. K. Goel, Applied Surface Science 370 (2016) 418-426.

M. F. Ashby, D. R. H. Jones, Engineering Materials 2, Pergamon Press, Oxford (2006). ISBN 978-0-08-0096668-7

H. Skuleva, S. Malinovb, W. Shac, P. A. M. Basheer, Surface and Coating Technology 197 (2005) 177-184.

K. Goyal, World Journal of Engineering 16(1) (2019) 64-70. WJE-08-2018-0262

I. E. Celik, O. Culha, B. Uyulgan, N. F. Akazem, I. Ozdemir, A. Turk, Surface and Coating Technology 200(14-15) (2006) 4320-4328.

H. Vasudev, G. Prashar, L. Thakur, A. Bansal, Surface Topography: Metrology and Properties 9(3) (2021) 035003.

S. Luyckx, C. N. Machio, International Journal of Refractory Metals and Hard Materials 25 (2007) 11-15. 10.009

S. Hong, Y. Wu, J. Zhang, Ultrasonics Sonochemistry 31 (2016) 563–-569.

J. K. N. Murthy, D. S. Rao, B. Venkataraman, Wear 249(7) (2001) 592-600.

J. K. N. Murthy, B. Venkataraman, Surface and Coating Technology 200(8) (2006) 2642-2652.

D. Mahmoudi, A. T. Tabrizi, H. Aghajani, Surface Topography: Metrology and Properties 9(1) (2021) 015025.

D. K. Goyal, H. Singh, H. Kumar, V. Sahni, Journal of Tribology 136(4) (2014) 041602.

J. Kitamura, Z. Tang, H. Mizuno, K. Sato, A. Burgess, Journal of Thermal Spray Technology 20(1-2) (2011) 170–185.

D. A. Stewart, P. H. Shipway, D. G. McCartney, Acta Materialia 48 (2000) 1593-1604.

T. Sudaprasert, P. H. Shipway, D. G. McCartney, Wear 255 (2003) 943-949.

J. Subrahmanyam, M. P. Srivastava, R. Sivakumar, Materials Science and Engineering 84 (1986) 209-214.

W. Coulson, S. J. Harris, Transactions of the Institute of Metal Finishing75 (1997) 108–112.

J. Barber, B. G. Mellor, R. J. K. Wood, Wear 259(1) (2005) 125-134.

Y. Xie, X. Pei, S. Wei, International Journal of Surface Science and Engineering10(4) (2016) 365-374.

I. Hussainova, J. Kubarsepp, J. Pirso, Wear 250(1-12) (2001) 818–825.

W. Zhang, C. Ji, Q. Fu, Z. Shi, Surface Topography: Metrology and Properties 8(3) (2020) 035014.

D. A. Stewart, P.H. Shipway, D. G. McCartney, Wear 225(2) (1999) 789-798.

D. K. Goyal, H. Singh, H. Kumar, V. Sahni, Journal of Thermal Spray Technology 21 (2012) 838-851.

C. Zhang, Z. Jiang, L. Zhao, Surface Topography: Metrology and Properties 8(3) (2020) 035010.

L. Thakur, N. Arora, Surface and Coating Technology 309 (2017) 860-871.

N. Francis, K. Viswanadhan, M. Paulose, Materials and Manufacturing Process 31(7) (2016) 969-975.

H. Arabnejad, A. Mansouri, S. Shirazi, B. McLaury, Wear 332 (2015) 1044-1050.

P. Fauchais, M. Vardelle, A. Vardelle, S. Goutier, Sprays Used for Thermal Barrier Coatings in Droplet and Spray Transport: Paradigms and Applications, S. Basu, A. Kumar Agarwal, A. Mukhopadhyay, C. Patel, Eds., Springer (2018) 311-344.

M. Ramesh, S. Prakash, S. Nath, P.K. Sapra, B. Venkataraman, Wear 269(3) (2010) 197-205.

K. V. S. Rao, K. Girisha, S. Eswar, Material Today Proceeding 4(9) (2017) 10221-10224.

K. Goyal, Tribology – Materials, Surfaces and Interfaces (2018) 97-106.

K. Manjunathaa, G. Giridhara, N. Jegadeeswaran, Material Today Proceeding 45(1) (2021) 15-20.

K. Goyal, R. Goyal, Surface Engineering 36(11) (2020) 1200-1209

G. Singh, S. Kumar, S. S. Sehgal, Particulate Science and Technology 38(1) (2020) 34-44.

H. Asgari, G. Saha, M. Mohammadi, Journal of Material Science and Technology 43 (2017) 2123-2135.

Y. Mazaheri, F. Karimzadeh, M. H. Enayati, Journal of Material Science and Technology 29 (2013) 813-820.

Y. Huang, X. Ding, C. Q. Yuan, Z. K. Yu, Z. X. Ding, Triobology International 148 (2020) 106315.

V. Sharma, M. Kaur, S. Bhandari, Engineering Research Express 1(1) (2019) 012001.

E. Turunen, T. Varis, T. W. Gustafsson, J. Keskinen, Surface and Coating Technology 200 (2006) 4987-4994.



How to Cite

Kumar, R., Bhandari, D., & Goyal, K. (2022). Mechanical and microstructural characterization of yttria-stabilized zirconia (Y2O3/ZrO2; YSZ) nanoparticles reinforced WC-10Co-4Cr coated turbine steel: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(4), 651–666.



Electrodeposition and coatings