Nickel contamination analysis at cost-effective silver printed paper-based electrodes based on carbon black dimethylglyoxime ink as electrode modifier
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1173Keywords:
Carbon black, dimethylglyoxime, nickel, stripping voltammetry
Abstract
Electrochemical detection of metal cations at paper-based sensors has been suggested as an attractive alternative to current spectroscopic and chromatographic detection techniques due to the ease of fabrication, disposable nature, and low cost. Herein, a novel carbon black (CB), dimethylglyoxime (DMG) ink is designed as an electrode modifier in conjunction with 3-electrode inkjet-printed paper substrates for use in the adsorptive stripping voltammetric electroanalysis of nickel cations in water samples. The developed method provides a novel, low-cost, rapid, and portable adsorptive stripping detection approach towards metal analysis in the absence of the commonly used toxic metallic films. The study demonstrated a novel approach to nickel detection at paper-based sensors and builds on previous work in the field of paper-based metal analysis by limiting the use of toxic metal films. The device sensitivity is improved by increasing the active surface area, electron transfer kinetics, and catalytic effects associated with non-conductive dimethylglyoxime films through CB nanoparticles for the first time and confirmed by electroanalysis. The first use of the CB-DMG ink allows for the selective preconcentration of analyte at the electrode surface without the use of toxic Mercury or Bismuth metallic films. Compared to similarly reported paper-based sensors, improved limits of detection (48 µg L-1), selectivity, and intermetallic interferences were achieved. The method was applied to the detection of nickel in water samples well below World Health Organization (WHO) standards.
Downloads
References
A. Ahmed, Journal of Bacteriology and Mycology 6(3) (2018) 179-181. https://doi.org/10.15406/jbmoa.2018.06.00199
E. S. Forzani, H. Zhang, W. Chen, N. Tao, Environmental Science and Technology 39(5) (2005) 1257–1262. https://doi.org/10.1021/es049234z
L. Eddaif, A. Shaban, J. Telegdi, International Journal of Environmental Analytical Chemistry 99(9) (2019) 824–853. https://doi.org/10.1080/03067319.2019.1616708
F. Ma, D. Jagner, L. Renman, Analytical Chemistry, 69(9) (1997) 1782–1784. https://doi.org/10.1021/ac961023s
M. Rosal, X. Cetó, N. Serrano, C. Ariño, M. Esteban, J. M. Díaz-Cruz, Journal of Electroanalytical Chemistry 839 (2019) 83–89. https://doi.org/10.1016/j.jelechem.2019.03.025
J. Zen, N. Chi, F. Hsu, M. Chung, Analyst 120 (1995) 0–4. https://doi.org/10.1039/AN9952000511
K. Pokpas, N. Jahed, E. McDonald, P. Bezuidenhout, S. Smith, K. Land, E. Iwuoha, Electroanalysis 32(12) (2020) 3017–3031. https://doi.org/10.1002/elan.202060379
K. Pokpas, N. Jahed, P. G. Baker, E. I. Iwuoha, Sensors 17(8) (2017) 1711. https://doi.org/10.3390/S17081711
B. H. Nguyen, B. T. Nguyen, H. V. Vu, C. V. Nguyen, D. T. Nguyen, L. T. Nguyen, T. T. Vu, L. D. Tran, Current Applied Physics 16(2) (2016) 135–140. https://doi.org/10.1016/j.cap.2015.11.004
M. Pumera, Electrochemistry Communications 36 (2013) 14–18. https://doi.org/10.1016/j.elecom.2013.08.028
T. Vural, F. Kuralay, C. Bayram, S. Abaci, E. B. Denkbas, Applied Surface Science 257(2) (2010) 622–627. https://doi.org/10.1016/j.apsusc.2010.07.048
I. Taurino, S. Carrara, M. Giorcelli, A. Tagliaferro, G. de Micheli, Surface Science 606(3) (2012) 156–160. https://doi.org/10.1016/j.susc.2011.09.001
L. Li, D. Liu, A. Shi, T. You, Sensors and Actuators B 255 (2018) 1762–1770. https://doi.org/10.1016/j.snb.2017.08.190
E. Punrat, C. Maksuk, S. Chuanuwatanakul, W. Wonsawat, O. Chailapakul, Talanta 150 (2016) 198–205. https://doi.org/10.1016/j.talanta.2015.12.016
R. N. Goyal, V. K. Gupta, N. Bachheti, Analytica Chimica Acta 597(1) (2007) 82–89. https://doi.org/10.1016/j.aca.2007.06.017
A. Wong, A. M. Santos, O. Fatibello-Filho, Sensors and Actuators B 255 (2018) 2264–2273. https://doi.org/10.1016/j.snb.2017.09.020
J. Smajdor, R. Piech, M. Ławrywianiec, B. Paczosa-Bator, Analytical Biochemistry 544 (2018) 7–12. https://doi.org/10.1016/j.ab.2017.12.025
J. Hu, Z. Zhang, Nanomaterials, 10(10) (2020) 1–14. https://doi.org/10.3390/nano10102020
T. A. Silva, F. C. Moraes, B. C. Janegitz, O. Fatibello-Filho, D. Ganta, Journal of Nanomate¬ri-als 2017 (2017) 1-14. https://doi.org/10.1155/2017/4571614
F. Arduini, S. Cinti, V. Mazzaracchio, V. Scognamiglio, A. Amine, D. Moscone, Biosensors and Bioelectronics 156 (2020). https://doi.org/10.1016/j.bios.2020.112033
K. Y. Hwa, T. S. K. Sharma, P. Karuppaiah, New Journal of Chemistry 43(30) (2019) 12078–12086. https://doi.org/10.1039/c9nj02531f
M. Cirrincione, B. Zanfrognini, L. Pigani, M. Protti, L. Mercolini, C. Zanardi, Analyst 146(2) (2021) 612–619. https://doi.org/10.1039/d0an01932a
L. P. Silva, T. A. Silva, F. C. Moraes, O. Fatibello-Filho, Journal of Solid State Electrochemistry 24(8) (2020) 1827–1834. https://doi.org/10.1007/s10008-020-04541-1
M. Łysoń, A. Górska, B. Paczosa-Bator, R. Piech, Electrocatalysis 12(6) (2021) 641–649. https://doi.org/10.1007/s12678-021-00676-5
J. V. Maciel, G. D. da Silveira, A. M. M. Durigon, O. Fatibello-Filho, D. Dias, Talanta 236(1) (2022) 122881. https://doi.org/10.1016/j.talanta.2021.122881
R. Xie, L. Zhou, C. Lan, F. Fan, R. Xie, H. Tan, T. Xie, L. Zhao, Royal Society Open Science 5(7) (2018) 1-10. https://doi.org/10.1098/rsos.180282
A. Gorska, B. Paczosa-Bator, R. Piech, Sensors 21(1) (2021) 60. https://doi.org/10.3390/s21010060
I. Bargiel, J. Smajdor, A. Gorska, B. Paczosa-bator, R. Piech, Materials 14(24) (2021) 7582. https://doi.org/10.3390/ma14247582
P. Lisowski, P. K. Zarzycki, Camera Separatoria 4(2) (2012) 143–149.
J.-W. Tortorich, Ryan P. Song, E. Choi, 224th ECS Meeting, 224th ECS Meeting Abstracts 2013, San Francisco, California, USA, 2013, 2765. http://toc.proceedings.com/22193webtoc.pdf
R. Tortorich, H. Shamkhalichenar, J.-W. Choi, Applied Sciences 8(2) (2018) 288–304. https://doi.org/10.3390/app8020288
E. Song, R. P. Tortorich, T. H. da Costa, J. W. Choi, Microelectronic Engineering 145 (2015) 143–148. https://doi.org/10.1016/j.mee.2015.04.004
M. Mass, L. S. Veiga, O. Garate, G. Longinotti, A. Moya, E. Ramon, R. Villa, G. Ybarra, G. Gabriel, Nanomaterials 11(7) (2021) 1645. https://doi.org/10.3390/nano11071645
P. Rewatkar, P. K. Enaganti, M. Rishi, S. Mukhopadhyay, S. Goel, International Journal of Hydrogen Energy 46(71) (2021) 35408–35419. https://doi.org/10.1016/j.ijhydene.2021.08.102
T. Kant, K. Shrivas, K. Tapadia, R. Devi, V. Ganescan, M. K. Deb, New Journal of Chemistry 45 (2021) 8297-8305. https://doi.org/10.1039/D1NJ00771H
E. Kuusisto, J. J. Heikkinen, P. Jarvinen, T. Sikanen, S. Franssila, Sensors and Actuators B 336(1) (2021) 129729. https://doi.org/10.1016/j.snb.2021.129727
P. B. Deroco, D. W. Junior, L. T. Kubota, Chemosensors 9(4) (2021) 61. https://doi.org/10.3390/chemosensors9040061
S. Dudala, S. Srikanth, S. K. Dubey, A. Javed, S. Goel, Micromachines 12(9) (2021) 1–13. https://doi.org/10.3390/mi12091037
B. Li, X. Liang, G. Li, F. Shao, T. Xia, S. Xu, N. Hu, Y. Su, Z. Yang, Y. Zhang, ACS Applied Materials and Interfaces 12(35) (2020) 39444–39454. https://doi.org/10.1021/acsami.0c11788
I. J. Fernandes, A. F. Aroche, A. Schuck, P. Lamberty, C. R. Peter, W. Hasenkamp, T. L. A. C. Rocha, Scientific Reports 10(1) (2020) 8878. https://doi.org/10.1038/s41598-020-65698-3
S. Lai, Y. Vlamdis, N. Mishra, P. Cosseddu, V. Miseikis, P. C. Ricci, V. Voliani, C. Coletti, A. Bonfiglio, Advanced Materials Technologies 6(12) (2021) 2100481. https://doi.org/10.1002/admt.202100481
T. Pandhi, C. Cornwell, K. Fujimoto, P. Barnes, J. Cox, H. Xiong, P. H. Davis, H. Subbaraman, J. E. Koehne, D. Estrada, RSC Advances 10(63) (2020) 38205–38219. https://doi.org/10.1039/d0ra04786d
E. Bihar, D. Corzo, T. C. Hidalgo, D. Rosas-Villalva, K. N. Salama, S. Inal, D. Baran, Advanced Materials Technologies, 5(8) (2020) 2000226. https://doi.org/10.1002/admt.202000226
K. Pokpas, N. Jahed, E. Iwuoha, Electrocatalysis 10(4) (2019) 352–364. https://doi.org/10.1007/s12678-019-00516-7
A. Ferancová, M. K. Hattuniemi, A. M. Sesay, J. P. Räty, V. T. Virtanen, Mine Water and the Environment 35(4) (2016) 547-552. https://doi.org/10.1007/s10230-015-0357-1
A. Ferancová, M. K. Hattuniemi, A. M. Sesay, J. P. Räty, V. T. Virtanen, Journal of Hazardous Materials 306 (2016) 50–57. https://doi.org/10.1016/j.jhazmat.2015.11.057
V. Padilla, N. Serrano, J. M. Díaz-Cruz, Chemosensors 9(5) (2021) 94. https://doi.org/10.3390/chemosensors9050094
R. Heidarimoghadam, A. Farmany, BMC Chemistry 14(1) (2020) 29. https://doi.org/10.1186/s13065-020-00681-7
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.