A sensitive voltammetric sensor for specific recognition of vitamin C in human plasma based on MAPbI3 perovskite nanorods

Original scientific paper

  • Gizem Tiris Bezmialem Vakif University, Faculty of Pharmacy, Department of Analytical Chemistry, 34093 İstanbul, Turkey https://orcid.org/0000-0002-2547-6086
  • Yasamin Khoshnavaz Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey
  • Elif Naz Öven Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey
  • Mohammad Mehmandoust Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey and Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R&D Group), 54187 Sakarya, Turkey https://orcid.org/0000-0002-8545-0603
  • Nevin Erk Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey and Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R&D Group), 54187 Sakarya, Turkey
Keywords: Voltammetry, ascorbic acid, MAPbI3, cysteine, human plasma
Graphical Abstract

Abstract

A novel and sensitive electrode was suggested for the rapid determination of ascorbic acid (AA) using a glassy carbon electrode (GCE) modified with synthesized MAPbI3 and L-cys (L-cys/MAPbI3/GCE). Determination of ascorbic acid as an important component of the human diet due to help in decreasing blood pressure and improving endothelial function is crucial. The synthesized MAPbI3 was characterized by different methods, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The fabricated electrode exhibited superior electrical conductivity and fast electron transfer kinetics. The results illustrated that the developed electrode had an outstanding electrocatalytic activity towards the oxidation of AA in 0.1 M Britton–Robinson buffer(B-R) as a supporting electrolyte. The modified electrode demonstrated a linear range in differential pulse voltammetry of 0.02–11.4 µM with a low detection limit of 8.0 nM for ascorbic acid. It can be stated that the proposed sensor can be successfully applied to the determination of ascorbic acid in human plasma samples.

Downloads

Download data is not yet available.

References

J. Wang, X. Peng, D. Li, X. Jiang, Z. Pan, A. Chen, L. Huang, J. Hu, Microchimica Acta 185 (2018) 42. https://doi.org/10.1007/s00604-017-2557-9

E. Kishida, Y. Nishimoto, S. Kojo, Analytical Chemistry 64 (1992) 1505-1507. https://doi.org/10.1021/ac00037a035

N. Ismillayli, D. Hermanto, I. S. Andayani, R. Honiar, U. K. Zuryati, B. Mariana, L. M. Shofiyana, Al-Kimia 8 (2020) 168-176. http://journal.uin-alauddin.ac.id/index.php/al-kimia/article/view/15097

A. A. Ensafi, H. Karimi-Maleh, International Journal of Electrochemical Science 5 (2010) 392-406. http://electrochemsci.org/papers/vol5/5030392.pdf

H. Karimi-Maleh, M. Hatami, R. Moradi, M. A. Khalilzadeh, S. Amiri, H. Sadeghifar, Microchim Acta 183 (2016) 2957-2964. https://doi.org/10.1007/s00604-016-1946-9

H. Karimi-Maleh, F. Karimi, L. Fu, A. L. Sanati, M. Alizadeh, C. Karaman, Y. Orooji, Journal of Hazardous Materials 423 (2022) 127058. https://doi.org/10.1016/j.jhazmat.2021.127058

H. Karimi-Maleh, F. Tahernejad-Javazmi, M. Daryanavard, H. Hadadzadeh, A. A. Ensafi, M. Abbasghorbani, Electroanalysis 26 (2014) 962-970. https://doi.org/10.1002/elan.201400013

H. Karimi-Maleh, A. A. Ensafi, H. R. Ensafi, Journal of the Brazilian Chemical Society 20 (2009) 880-887. https://pdfs.semanticscholar.org/58af/6c3217147877cf86331e506d81147793dc60.pdf

M. Mehmandoust, F. Uzcan, M. Soylak, N. Erk, Chemosphere (2021) 132809. https://doi.org/10.1016/j.chemosphere.2021.132809

M. Mehmandoust, N. Erk, C. Karaman, O. Karaman, Chemosphere (2021) 132807. https://doi.org/10.1016/j.chemosphere.2021.132807

J. Mohanraj, D. Durgalakshmi, R. A. Rakkesh, S. Balakumar, S. Rajendran, H. Karimi-Maleh, Journal of Colloid and Interface Science 566 (2020) 463-472. https://doi.org/10.1016/j.jcis.2020.01.089

A. Taherkhani, T. Jamali, H. Hadadzadeh, H. Karimi-Maleh, H. Beitollahi, M. Taghavi, F. Karimi, Ionics 20 (2014) 421-429. https://doi.org/10.1007/s11581-013-0992-0

J. B. Raoof, R. Ojani, H. Karimi-Maleh, Journal of Applied Electrochemistry 39 (2009) 1169-1175. https://doi.org/10.1007/s10800-009-9781-x

M. Mehmandoust, N. Erk, C. Karaman, F. Karimi, S. Salmanpour, Micromachines 12 (2021) 1334. https://doi.org/10.3390/mi12111334

A. A. Ensafi, S. Dadkhah-Tehrani, H. Karimi-Maleh, Analytical Sciences 27 (2011) 409-414. ttps://doi.org/10.2116/analsci.27.409

E. Mirmomtaz, A.A. Ensafi, H. Karimi-Maleh, Electroanalysis 20 (2008) 1973-1979. https://doi.org/10.1002/elan.200804273

H. Karimi-Maleh, A. Khataee, F. Karimi, M. Baghayeri, L. Fu, J. Rouhi, C. Karaman, O. Karaman, R. Boukherroub, Chemosphere (2021) 132928. https://doi.org/10.1016/j.chemosphere.2021.132928

A. D. Sheikh, V. Vhanalakar, A. Katware, K. Pawar, P.S. Patil, Advanced Materials Technologies 4 (2019) 1900251. https://doi.org/10.1002/admt.201900251

Q. Wang, S. Yu, M. Ma, X. Wu, W. Qin, Materials Today Chemistry 12 (2019) 343-352. https://doi.org/10.1016/j.mtchem.2019.03.007

T. Wang, S. Hou, H. Zhang, Y. Yang, W. Xu, T. Ao, M. Kang, G. Pan, Y. Mao, Journal of Alloys and Compounds 872 (2021) 159589. https://doi.org/10.1016/j.jallcom.2021.159589

M. Mehmandoust, S. Çakar, M. Özacar, S. Salmanpour, N. Erk, Topics in Catalysis (2021) 1-13. https://doi.org/10.1007/s11244-021-01479-0

X. Guo, C. McCleese, C. Kolodziej, A. C. Samia, Y. Zhao, C. Burda, Dalton Transactions 45 (2016) 3806-3813. https://doi.org/10.1039/C5DT04420K

W. Kong, Z. Ye, Z. Qi, B. Zhang, M. Wang, A. Rahimi-Iman, H. Wu, Physical Chemistry Chemical Physics 17 (2015) 16405-16411. https://doi.org/10.1039/C5CP02605A

A. Mishra, Z. Ahmad, F. Touati, R. Shakoor, M. K. Nazeeruddin, RSC Advances 9 (2019) 11589-11594. https://doi.org/10.1039/C9RA00200F

J. F. Wang, L. Zhu, B. G. Zhao, Y. L. Zhao, J. Song, X. Q. Gu, Y. H. Qiang, Scientific Reports 7 (2017). https://doi.org/10.1038/s41598-017-14920-w

T. I. Alanazi, O. S. Game, J. A. Smith, R. C. Kilbride, C. Greenland, R. Jayaprakash, K. Georgiou, N. J. Terrill, D. G. Lidzey, RSC Advance 10 (2020) 40341-40350. https://doi.org/10.1039/D0RA07107B

M. Mehmandoust, N. Erk, M. Alizadeh, S. Salmanpour, Journal of Food Measurement and Characterization 15 (2021) 5288-5295. https://doi.org/10.1007/s11694-021-01100-8

M. Mehmandoust, N. Erk, M. Alizadeh, S. Salmanpour, Journal of Food Measurement and Characterization (2021) 1-8. https://doi.org/10.1007/s11694-021-01100-8

M. Alizadeh, M. Mehmandoust, O. Nodrat, S. Salmanpour, N. Erk, Journal of Food Measurement and Characterization (2021) 1-8. https://doi.org/10.1007/s11694-021-01128-w

M. Baghayeri, M. Nodehi, H. Veisi, M. B. Tehrani, B. Maleki, M. Mehmandost, DARU Journal of Pharmaceutical Sciences 27 (2019) 593-603. https://doi.org/10.1007/s40199-019-00287-y

L. Zhang, J. Feng, K.-C. Chou, L. Su, X. Hou, Journal of Electroanalytical Chemistry 803 (2017) 11-18. https://doi.org/10.1016/j.jelechem.2017.09.006

X. Li, Y. Wang, J. Liu, M. Sun, X. Bo, H.-L. Wang, M. Zhou, Electrochemistry Communications 82 (2017) 139-144. https://doi.org/10.1016/j.elecom.2017.08.007

D. Huang, X. Li, M. Chen, F. Chen, Z. Wan, R. Rui, R. Wang, S. Fan, H. Wu, Journal of Electroanalytical Chemistry 841 (2019) 101-106. https://doi.org/10.1016/j.jelechem.2019.04.041

H. Wu, X. Li, M. Chen, C. Wang, T. Wei, H. Zhang, S. Fan, Electrochimica Acta 259 (2018) 355-364. https://doi.org/10.1016/j.electacta.2017.10.122

Published
28-01-2022
Section
Electrochemical Science