Electrocatalytic determination of levodopa in presence of cabergoline using carbon paste electrode modified with graphene quantum dots/2-chlorobenzoyl ferrocene/ionic liquid

Original scientific paper


  • Peyman Mohammadzadeh Jahani School of Medicine, Bam University of Medical Sciences, Bam, Iran




Electrochemical sensor, chemically modified electrode, levodopa, cabergoline
Graphical Abstract


The electrochemical sensor was fabricated for the simultaneous determination of levodopa and cabergoline using carbon paste electrode (CPE) modified with graphene quantum dots (GQD), 2-chlorobenzoyl ferrocene (2CBF) and ionic liquid (IL). Then, the electrochemical behavior of levodopa alone and simultaneously with cabergoline at the surface of GQDs/2CBF/IL/CPE was investigated in phosphate buffer solution (PBS). Under optimal PBS, pH=7 condition, oxidation peak current has been found proportional to levodopa concentration in the range between 0.07 μM and 500.0 μM, with the limit of detection (LOD) of 0.02 μM (S/N=3). Outputs showed that at GQDs/2CBF/IL/CPE surface, the levodopa and cabergoline oxidation peaks are separated by the potential difference of 200 mV. In addition, it was found that this modified electrode possesses acceptable sensitivity, selectivity, stability and repeatability. All these properties were sufficient to allow simultaneous detection of levodopa and cabergoline in real samples at the surface of GQDs/2CBF/IL/CPE. This was supported by the successful application of this electro­chemical sensor electrode for the determination of levodopa and cabergoline in urine, serum, and cabergoline tablets.


Download data is not yet available.


M. Sajid, N. Baig, K. Alhooshani, TrAC Trends in Analytical Chemistry 118 (2019) 368-385. https://doi.org/10.1016/j.trac.2019.05.042

A. Hosseini-Fakhrabad, R. Sanavi-Khoshnood, M.R. Abedi, M. Ebrahimi, Eurasian Chemical Communications 3 (2021) 627-634. http://dx.doi.org/10.22034/ecc.2021.288271.1182

Y.P. Dong, L. Huang, X.F. Chu, L.Z. Pei, Russian Journal of Electrochemistry 49 (2013) 571-576. https://doi.org/10.1134/S1023193513060037

P. Prasad, N. Y. Sreedhar, Chemical Methodologies 2 (2018) 277-290. https://doi.org/10.22034/¬CHEMM.2018.63835

Mallappa, S. T. Nandibewoor, Sensing and Bio-Sensing Research 12 (2017) 1-7. https://doi.org/10.¬1016/¬j.sbsr.2016.11.002

F. Mehri-Talarposhti, A. Ghorbani-Hasan Saraei, L. Golestan, S. A. Shahidi, Asian Journal of Na¬nosciences and Materials 3 (2020) 313-320. https://doi.org/10.26655/AJNANOMAT.2020.4.5

D. N. Unal, E. Eksin, A. Erdem, Analytical Letters 51 (2018) 265-278. https://doi.org/10.1080/000¬32719.¬2017.1338714

S. Azimi, M. Amiri, H. Imanzadeh, A. Bezaatpour, Advanced Journal of Chemistry-Section A 4 (2021) 152-164. https://doi.org/10.22034/AJCA.2021.275901.1246

S. M. Patil, V. P. Pattar, S. T. Nandibewoor, Journal of Electrochemical Science and Engineering 6 (2016) 265-276. https://doi.org/10.5599/jese.350

F. A. Arena, P.H. Suegama, D. Bevilaqua, A. L. A. dos Santos, C. S. Fugivara, A. V. Benedetti, Minerals Engineering 92 (2016) 229-241. https://doi.org/10.1016/j.mineng.2016.03.025

M. Pirozmand, A. Nezhadali, M. Payehghadr, L. Saghatforoush, Eurasian Chemical Communications 2 (2020) 1021-1032. https://doi.org/10.22034/ecc.2020.241560.1063

K. V. Harisha, B. E. Kumara Swamy, P.S . Ganesh, H. Jayadevappa, Journal of Electroanalytical Chemistry 832 (2019) 486-492. https://doi.org/10.1016/j.jelechem.2018.11.024

R. Pourghobadi, M. R. Baezzat, Iranian Chemical Communication 6 (2018) 359-368. https://doi.org/10.30473/icc.2018.4143

O. J. D’Souza, R. J. Mascarenhas, A. K. Satpati, B. M. Basavaraja, Science China Chemistry 62 (2019) 262-270. https://doi.org/10.1007/s11426-018-9353-x

Q. Yan, N. Zhi, L. Yang, G. Xu, Q. Feng, Q. Zhang, S. Sun, Scientific Reports 10 (2020) 10607. https://doi.org/10.1038/s41598-020-67394-8

G. Li, J. Zeng, L. Zhao, Z. Wang, C. Dong, J. Liang, Y. Huang, Journal of Nanoparticle Research 21 (2019) 162. https://doi.org/10.1007/s11051-019-4602-6

S. S. Mahmood, A. J. Atiya, F. H. Abdulrazzak, A. F. Alkaim, F. H. Hussein, Journal of Medicinal and Chemical Sciences 4 (2021) 225-229. https://doi.org/10.26655/JMCHEMSCI.2021.3.2

V. Karthika, P. Kaleeswarran, K. Gopinath, A. Arumugam, M. Govindarajan, N. S. Alharbi, G. Benelli, Materials Science and Engineering: C 90 (2018) 589-601. https://doi.org/10.1016/j.msec.2018.04.094

R. Jabbari, N. Ghasemi, Chemical Methodologies 5 (2021) 21-29. https://doi.org/10.22034/chemm.¬2021.118446

A. G. El-Shamy, Materials Chemistry and Physics 243 (2020) 122640. https://doi.org/10.1016/j.mat¬chem¬phys.¬2020.122640

S. Gupta, M. Lakshman, Journal of Medicinal and Chemical Sciences 2 (2019) 51-54. https://doi.org/¬10.26655/JMCHEMSCI.2019.3.3

A. Peng, H. Yan, C. Luo, G. Wang, Y. Wang, X. Ye, H. Ding, International Journal of Electrochemical Science 12 (2017) 330-346. https://doi.org/10.20964/2017.01.03

E. Punrat, C. Maksuk, S. Chuanuwatanakul, W. Wonsawat, O. Chailapakul, Talanta 150 (2016) 198-205. https://doi.org/10.1016/j.talanta.2015.12.016

J. Zhao, G. Chen, L. Zhu, G. Li, Electrochemistry Communications 13 (2011) 31-33. https://doi.org/10.¬1016/j.elecom.2010.11.005

G. Mansouri, M. B.Gholivand, Z. Eshagh, Iranian Chemical Communication 7 (2019) 556-573. https://doi.org/10.30473/ICC.2019.40174.1429

M. Opallo, A. Lesniewski, Journal of Electroanalytical Chemistry 656 (2011) 2-16. https://doi.org/¬10.1016/j.jelechem.2011.01.008

F. Xiao, C. Ruan, J. Li, L. Liu, F. Zhao, B. Zeng, Electroanalysis 20 (2008) 361–366. https://doi.org/10.¬1002/elan.200704042

J. Yang, Q. Wang, M. Zhang, S. Zhang, L. Zhang, Food Chemistry 187 (2015) 1-6. https://doi.org/10.¬1016/j.foodchem.2015.04.009

H.V. Barnes, Clinical Medicine, Year Book Medical Publisher, New York, 1988, 745.

W. H. Kim, M. M. Karim, S. H. Lee, Analytica Chimica Acta 619 (2008) 2-7. https://doi.org/10.1016/¬j.aca.2008.01.006

F. Bugamelli, C. Marcheselli, E. Barba, M.A. Raggi, Journal of Pharmaceutical and Biomedical Analysis 54 (2011) 562-567. https://doi.org/10.1016/j.jpba.2010.09.042

S. Zhao, W. Bai, B. Wang, M. He, Talanta 73 (2007) 142-146. https://doi.org/10.1016/j.talanta.2007.¬03.023

J. L. Montastruc, O. Rascol, J. M. Senard, Movement Disorders 14 (1999) 725-730. https://doi.org/10.¬1002/1531-8257

K. Igarashi, K. Hotta, F. Kasuya, K. Abe, S. Sakoda, Journal of Chromatography B 792 (2003) 55-61. https://doi.org/10.1016/S1570-0232(03)00279-4

A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edition, John Wiley & Sons, New York, 2001.




How to Cite

Mohammadzadeh Jahani, P. (2021). Electrocatalytic determination of levodopa in presence of cabergoline using carbon paste electrode modified with graphene quantum dots/2-chlorobenzoyl ferrocene/ionic liquid: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(1), 81–90. https://doi.org/10.5599/jese.1133



Electrochemical Science