Spray pyrolisis deposition and characterization of Cd-TiO2 thin film for photocatalytic and photovoltaic applications

Original scientific paper

Authors

  • Masilamani Raja Sekaran PG & Research Department of Physics, Thiru A. Govindasamy Govt. Arts College, Tindivanam 604002, India and Department of Physics, Research and Development Centre, Bharathiar University, Coimbatore 641046, India https://orcid.org/0000-0002-4422-2938
  • Parasuraman Kumaresan PG & Research Department of Physics, Thiru A. Govindasamy Govt. Arts College, Tindivanam 604002, India and Department of Physics, Research and Development Centre, Bharathiar University, Coimbatore 641046, India
  • Subramanian Nithiyanantham PG & Research Department of Physics, (Ultrasonics, NDT and Bio-Physics Divisions), Thiru, Vi. Kalyanasundaram Govt. Arts and Science College, Thiruvarur 610003, India https://orcid.org/0000-0001-7144-300X
  • Vatakkaputhanmadom Krishnaiyer Subramanian PG & Research Department of Chemistry, Periyar Govt. Arts College, Cuddalore 607001, India
  • Sankar Kalpana PG & Research Department of Physics, AMET University, Chennai 603112, India https://orcid.org/0000-0002-4869-7877

DOI:

https://doi.org/10.5599/jese.1120

Keywords:

Energy materials, doped TiO2 thin film, photocatalytic degradation, photocurrent-voltage characteristics
Graphical Abstract

Abstract

In the present paper, an innovative approach to enhance the photocatalytic efficiency and energy of photovoltaics by modifying the surface morphology of a TiO2 is demonstrated.The photovoltaic device provides sustainable power efficiency in TiO2 (TO) and Cd-TiO2 (CTO) thin films grown through spray pyrolysis. The structural and optical properties of the prepared undoped and Cd doped TiO2 thin films were studied. The morphology and content of the pro­duced samples were studied using scanning electron microscopy (SEM with EDAX). A UV-Vis spectrophotometer was used to record the optical absorption spectra of TiO2 nanoparticles. XRD analysis showed that TO and CTO had anatase structure, and the average crystalline size was calculated as 132.0 nm.The photocatalytic efficiency of TO and CTO for degradation of Rodhamine B (RhB) dye was examined. Also, power-voltage (P-V) and photocurrent-voltage (I-V) output current intensity relations were discussed.

Downloads

Download data is not yet available.

References

P. Roy, S. Berger, P. Schmuki, Angewandte Chemie International Edition 50(13) (2011) 2904-2939.https://doi.org/10.1002/anie.201001374

M. Xu, P. Da, H. Wu, D. Zhao, G. Zheng, Nano Letters 12(3) (2012)1503-1508. https://doi.org/10.1021/nl2042968

J. Yin, Y. Huang, S. Hameed, R. Zhou, L. Xie, Y. Ying, Nanoscale 12(34) (2020) 17571-17589. https://doi.org/10.1039/D0NR04156D

S. Hoang, S. Guo, N. T. Hahn, A. J. Bard, C. B. Mullins, Nano Letters 12(1) (2012) 26-32. https://doi.org/10.1021/nl2028188

Q. Huaulmé, V. M. Mwalukuku, D. Joly, J. Liotier, Y. Kervella, P. Maldivi, S. Narbey, F. Oswald, A. J. Riquelme, J. A. Anta, R. Demadrille, Nature Energy 5 (2020) 468-477. https://doi.org/10.1038/s41560- 020-0624-7

J. A. Kumar, K. D. Kumar, H.-J. Kim, Electrochimica Acta 330 (2020) 135261. https://doi.org/10.1016/j.electacta.2019.135261

M. V. Khenkin, E. A. Katz, A. Abate, et al., Nature Energy 5 (2020) 35-49. https://doi.org/10.1038/s41560-019-0529-5

M. Aftabuzzaman, C. Lu, H. K. Kim, Nanoscale 12(34) (2020) 17590-17648. https://doi.org/10.1039/D0NR04112B

N. N. Ilkhechi, A. R. Aghjehkohal, E. F. Tanour Aghaj, M. Mozammel, Journal of Materials Science: Materials in Electronics 28 (2017) 4598-4605. https://doi.org/10.1007/s10854-016-6097-6

Y. A. Kumar, S. Sambasivam, S. A. Siva, K. Zeb, W. Uddin, T. N. V. Krishna, K. D. Kumar, I. M. Obaidat, K.-J. Kim, Electrochimica Acta 334 (2020) 137318. https://doi.org/10.1016/j.electacta.2020.137318

H. Aydin, Journal of Physical Chemistry and Functional Materials 2(1) (2019) 18-22. https://dergipark.org.tr/tr/download/article-file/768305

L. Tian, X. Zhang, X. Xu, Z. Pang, X. Li, W. Wu, B. Liu, Dyes and Pigments 174 (2020) 108036. https://doi.org/10.1016/j.dyepig.2019.108036

K. Ahmad, Q. M. Suhail, Multi-junction Polymer Solar Cell, in: Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, O. V. Kharissova, L. M. Torres-Martínez, B. I. Kharissov, Eds., Springer, Cham, 2021 pp. 1817-1833. http://doi.org/10.1007/978-3-030-36268-3_196

A. Arunkumar, S. Shanavas, R. Acevedo, P. M. Anbarasan, Structural Chemistry 31 (2020) 1029-1042. https://doi.org/10.1007/s11224-019-01484-w

Q. Qiao, Y. Xie, J. T. McLeskey, Journal of Physical Chemistry C 112(26) (2008) 9912-9916. https://doi.org/10.1021/jp7115615

X. Nie, S. Yin, W. Duan, Z. Zhao, L. Li, Z. Zhang, Nano 16(01) (2021) 2130002. https://doi.org/10.1142/S1793292021300024

M. Murugalakshmi, M. Anitha, A. C. Dhanemozhi, Materials Today: Proceedings 8(1) (2019) 357-361. https://doi.org/10.1016/j.matpr.2019.02.123.

B. Ergin,E. Ketenci, F. Atay, International Journal of Hydrogen Energy 34(12) (2009) 5249-5254. https://doi.org/10.1016/j.ijhydene.2008.09.108

B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, Langmuir 29(3) (2013) 939-949. https://doi.org/10.1021/la303842c

N. Mariotti, M. Bonomo, L. Fagiolari, N. Barbero, C. Gerbaldi, F. Bella, C. Barolo, Green Chemistry 22(21) (2020) 7168-7218. https://doi.org/10.1039/D0GC01148G

S. Balachandran, R. Karthikeyan,K. Selvakumar, M. Swaminathan, International Journal of Environmental Analytical Chemistry (2020). https://doi.org/10.1080/03067319.2020.1790541

T. Delgado-Montiel, J. Baldenebro-López, R. Soto-Rojo, D. Glossman-Mitnik, Molecules 25(16) (2020) 3670. https://doi.org/10.3390/molecules25163670

M. R. Pallavolu, Y. A. Kumar, G. Mani, R. A. Alshgari, M. Ouladsmane, S. W. Joo, Journal of Electroanalytical Chemistry 899 (2021) 115695. https://doi.org/10.1016/j.jelechem.2021.115695

I. F. Elegbeleye, N. E.Maluta, R. R.Maphanga, Molecules 26(4) (2021) 955. https://doi.org/10.3390/molecules/26040955

Y. A. Sumanth, R. A. Sujatha, S. Mahalakshmi, P. C. Karthika, S. Nithiyanantham, S. Sara-vanan, M. Azagiri, Journal of Materials Science: Materialsin Electronics 27 (2016)1616-1621. https://doi.org/10.1007/s10854-015-3932-0

C. Dragonetti, A. Colombo, Molecules 26(9) (2021) 2461. https://doi.org/10.3390/molecules26092461

Downloads

Published

15-08-2022

How to Cite

Raja Sekaran, M. ., Kumaresan, P. ., Nithiyanantham, S. ., Subramanian , V. K., & Kalpana, S. (2022). Spray pyrolisis deposition and characterization of Cd-TiO2 thin film for photocatalytic and photovoltaic applications: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(5), 989–1000. https://doi.org/10.5599/jese.1120

Issue

Section

Electrochemical Science