Spray pyrolisis deposition and characterization of Cd-TiO2 thin film for photocatalytic and photovoltaic applications
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1120Keywords:
Energy materials, doped TiO2 thin film, photocatalytic degradation, photocurrent-voltage characteristicsAbstract
In the present paper, an innovative approach to enhance the photocatalytic efficiency and energy of photovoltaics by modifying the surface morphology of a TiO2 is demonstrated.The photovoltaic device provides sustainable power efficiency in TiO2 (TO) and Cd-TiO2 (CTO) thin films grown through spray pyrolysis. The structural and optical properties of the prepared undoped and Cd doped TiO2 thin films were studied. The morphology and content of the produced samples were studied using scanning electron microscopy (SEM with EDAX). A UV-Vis spectrophotometer was used to record the optical absorption spectra of TiO2 nanoparticles. XRD analysis showed that TO and CTO had anatase structure, and the average crystalline size was calculated as 132.0 nm.The photocatalytic efficiency of TO and CTO for degradation of Rodhamine B (RhB) dye was examined. Also, power-voltage (P-V) and photocurrent-voltage (I-V) output current intensity relations were discussed.
Downloads
References
P. Roy, S. Berger, P. Schmuki, Angewandte Chemie International Edition 50(13) (2011) 2904-2939.https://doi.org/10.1002/anie.201001374
M. Xu, P. Da, H. Wu, D. Zhao, G. Zheng, Nano Letters 12(3) (2012)1503-1508. https://doi.org/10.1021/nl2042968
J. Yin, Y. Huang, S. Hameed, R. Zhou, L. Xie, Y. Ying, Nanoscale 12(34) (2020) 17571-17589. https://doi.org/10.1039/D0NR04156D
S. Hoang, S. Guo, N. T. Hahn, A. J. Bard, C. B. Mullins, Nano Letters 12(1) (2012) 26-32. https://doi.org/10.1021/nl2028188
Q. Huaulmé, V. M. Mwalukuku, D. Joly, J. Liotier, Y. Kervella, P. Maldivi, S. Narbey, F. Oswald, A. J. Riquelme, J. A. Anta, R. Demadrille, Nature Energy 5 (2020) 468-477. https://doi.org/10.1038/s41560- 020-0624-7
J. A. Kumar, K. D. Kumar, H.-J. Kim, Electrochimica Acta 330 (2020) 135261. https://doi.org/10.1016/j.electacta.2019.135261
M. V. Khenkin, E. A. Katz, A. Abate, et al., Nature Energy 5 (2020) 35-49. https://doi.org/10.1038/s41560-019-0529-5
M. Aftabuzzaman, C. Lu, H. K. Kim, Nanoscale 12(34) (2020) 17590-17648. https://doi.org/10.1039/D0NR04112B
N. N. Ilkhechi, A. R. Aghjehkohal, E. F. Tanour Aghaj, M. Mozammel, Journal of Materials Science: Materials in Electronics 28 (2017) 4598-4605. https://doi.org/10.1007/s10854-016-6097-6
Y. A. Kumar, S. Sambasivam, S. A. Siva, K. Zeb, W. Uddin, T. N. V. Krishna, K. D. Kumar, I. M. Obaidat, K.-J. Kim, Electrochimica Acta 334 (2020) 137318. https://doi.org/10.1016/j.electacta.2020.137318
H. Aydin, Journal of Physical Chemistry and Functional Materials 2(1) (2019) 18-22. https://dergipark.org.tr/tr/download/article-file/768305
L. Tian, X. Zhang, X. Xu, Z. Pang, X. Li, W. Wu, B. Liu, Dyes and Pigments 174 (2020) 108036. https://doi.org/10.1016/j.dyepig.2019.108036
K. Ahmad, Q. M. Suhail, Multi-junction Polymer Solar Cell, in: Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, O. V. Kharissova, L. M. Torres-Martínez, B. I. Kharissov, Eds., Springer, Cham, 2021 pp. 1817-1833. http://doi.org/10.1007/978-3-030-36268-3_196
A. Arunkumar, S. Shanavas, R. Acevedo, P. M. Anbarasan, Structural Chemistry 31 (2020) 1029-1042. https://doi.org/10.1007/s11224-019-01484-w
Q. Qiao, Y. Xie, J. T. McLeskey, Journal of Physical Chemistry C 112(26) (2008) 9912-9916. https://doi.org/10.1021/jp7115615
X. Nie, S. Yin, W. Duan, Z. Zhao, L. Li, Z. Zhang, Nano 16(01) (2021) 2130002. https://doi.org/10.1142/S1793292021300024
M. Murugalakshmi, M. Anitha, A. C. Dhanemozhi, Materials Today: Proceedings 8(1) (2019) 357-361. https://doi.org/10.1016/j.matpr.2019.02.123.
B. Ergin,E. Ketenci, F. Atay, International Journal of Hydrogen Energy 34(12) (2009) 5249-5254. https://doi.org/10.1016/j.ijhydene.2008.09.108
B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, Langmuir 29(3) (2013) 939-949. https://doi.org/10.1021/la303842c
N. Mariotti, M. Bonomo, L. Fagiolari, N. Barbero, C. Gerbaldi, F. Bella, C. Barolo, Green Chemistry 22(21) (2020) 7168-7218. https://doi.org/10.1039/D0GC01148G
S. Balachandran, R. Karthikeyan,K. Selvakumar, M. Swaminathan, International Journal of Environmental Analytical Chemistry (2020). https://doi.org/10.1080/03067319.2020.1790541
T. Delgado-Montiel, J. Baldenebro-López, R. Soto-Rojo, D. Glossman-Mitnik, Molecules 25(16) (2020) 3670. https://doi.org/10.3390/molecules25163670
M. R. Pallavolu, Y. A. Kumar, G. Mani, R. A. Alshgari, M. Ouladsmane, S. W. Joo, Journal of Electroanalytical Chemistry 899 (2021) 115695. https://doi.org/10.1016/j.jelechem.2021.115695
I. F. Elegbeleye, N. E.Maluta, R. R.Maphanga, Molecules 26(4) (2021) 955. https://doi.org/10.3390/molecules/26040955
Y. A. Sumanth, R. A. Sujatha, S. Mahalakshmi, P. C. Karthika, S. Nithiyanantham, S. Sara-vanan, M. Azagiri, Journal of Materials Science: Materialsin Electronics 27 (2016)1616-1621. https://doi.org/10.1007/s10854-015-3932-0
C. Dragonetti, A. Colombo, Molecules 26(9) (2021) 2461. https://doi.org/10.3390/molecules26092461
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.