Sensitive electrochemical detection of bisphenol A at screen-printed graphite electrode modified with nitrogen-doped graphene sheets

Original scientific paper

  • Sakineh Esfandiari Baghbamidi Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
Keywords: voltammetric sensor, high sensitivity, lengthy stability, reproducibility
Graphical Abstract

Abstract

A novel voltammetric sensor was developed by modifying screen-printed graphite electrode (SPGE) with nitrogen doped graphene sheets (N-GSs) to detect bisphenol A. The electrochemical results exhibited that N-GSs / modified SPGE has high sensing performance towards the oxidation of bisphenol A. Excellent results were obtained for bisphenol A detection in the linear range from 0.08 to 300.0 µM with a sensitivity of 0.1626 µA µM-1 and limit of detection of 0.02 µM. Also, the fabricated N‑GSs/SPGE sensor showed good stability. The as-prepared sensor was tested towards the detection of bisphenol A in real samples. The measured results established the great sensing ability of N-GSs/SPGE for bisphenol A with high selectivity and good stability in real samples.

Downloads

Download data is not yet available.

References

W. Guo, A. Zhang, X. Zhang, C. Huang, D. Yang, N. Jia, Analytical and Bioanalytical Chemistry 408 (2016) 7173-7180. https://doi.org/10.1007/s00216-016-9746-y

A. Ghanam, A. A. Lahcen, A. Amine, Journal of Electroanalytical Chemistry 789 (2017) 58-66. https://doi.org/10.1016/j.jelechem.2017.02.026

G. F. Pereira, L. S. Andrade, R. C. Rocha-Filho, N. Bocchi, S. R. Biaggio, Electrochimica Acta 82 (2012) 3-8. https://doi.org/10.1016/j.electacta.2012.03.157

C. Hou, W. Tang, C. Zhang, Y. Wang, N. Zhu, Electrochimica Acta 144 (2014) 324-331. https://doi.org/10.1016/j.electacta.2014.08.053

K. Deng, X. Liu, C. Li, Z. Hou, H. Huang, Analytical Methods 9 (2017) 5509-5517. https://doi.org/10.1039/C7AY01573A

R. Zhang, L. Zhao, R. Liu, Journal of Photochemistry and Photobiology B: Biology 163 (2016) 40-46. https://doi.org/10.1016/j.jphotobiol.2016.08.011

L. Ren, J. Fang, G. Liu, J. Zhang, Z. Zhu, H. Liu, K. Lin, H. Zhang, S. Lu, Analytical and Bioanalytical Chemistry 408 (2016) 2621-2629. https://doi.org/10.1007/s00216-016-9372-8

T. E. Arbuckle, L. Marro, K. Davis, M. Fisher, P. Ayotte, P. Bélanger, P. Dumas, A. Leblanc, R. Bérubé, É. Gaudreau, Environmental Health Perspectives 123 (2015) 277-284. https://doi.org/10.1289/ehp.1408187

C. Hou, L. Zhao, F. Geng, D. Wang, L. H. Guo, Analytical and Bioanalytical Chemistry 408 (2016) 8795–8804. https://doi.org/10.1007/s00216-016-9584-y

G. Bolat, Y. T. Yaman, S. Abaci, Sensors and Actuators B: Chemical 255 (2018) 140-148. https://doi.org/10.1016/j.snb.2017.08.001

Y. Tian, P. Deng, Y. Wu, J. Li, J. Liu, G. Li, Q. He, Journal of the Electrochemical Society 167 (2020) 046514. https://doi.org/10.1149/1945-7111/ab79a7

D. N. Unal, E. Eksin, A. Erdem, Analytical Letters 51 (2018) 265-278. https://doi.org/10.1080/00032719.2017.1338714

M. Pirozmand, A. Nezhadali, M. Payehghadr, L. Saghatforoush, Eurasian Chemical Communications 2 (2020) 1021-1032. https://doi.org/10.22034/ECC.2020.241560.1063

A. Khodadadi, E. Faghih-Mirzaei, H. Karimi-Maleh, A. Abbaspourrad, S. Agarwal, V. K. Gupta, Sensors & Actuators, B: Chemical 284 (2019)‏ 568-574. https://doi.org/10.1016/j.snb.2018.12.164

S. M. Patil, V. P. Pattar, S. T. Nandibewoor, Journal of Electrochemical Science and Engineering 6 (2016) 265-276. https://doi.org/10.5599/jese.308

P. Prasad, N. Y. Sreedhar, Chemical Methodologies 2 (2018) 277-290. https://doi.org/10.22034/CHEMM.2018.63835

A. Smart, A. Crew, R. Pemberton, G. Hughes, O. Doran, J.P. Hart, TrAC Trends in Analytical Chemistry 127 (2020) 115898. https://doi.org/10.1016/j.trac.2020.115898

A. Vasilescu, G. Nunes, A. Hayat, U. Latif, J. L. Marty, Sensors 16 (2016) 1863. https://doi.org/10.3390/s16111863

R. K. Mishra, G. S. Nunes, L. Souto, J. L. Marty, Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry (2018) 487-498.

J. M. Díaz-Cruz, N. Serrano, C. Pérez-Ràfols, C. Ariño, M. Esteban, Journal of Solid State Electrochemistry 24 (2020) 2653-2661. https://doi.org/10.1007/s10008-020-04733-9

F. Mehri-Talarposhti, A. Ghorbani-Hasan Saraei, L. Golestan, S. A. Shahidi, Asian Journal of Nanosciences and Materials 3 (2020) 313-320. DOI: 10.26655/AJNANOMAT.2020.4.5

A. A. S. Mou, A. Ouarzane, M. El Rhazi, Journal of Electrochemical Science and Engineering 7 (2017) 111-118. https://doi.org/10.5599/jese.386

Y. Zhang, X. Li, D. Li, Q. Wei, Colloids and Surfaces B: Biointerfaces 186 (2020) 110683. https://doi.org/10.1016/j.colsurfb.2019.110683

H. Karimi-Maleh, F. Karimi, Y. Orooji, G. Mansouri, A. Razmjou, A. Aygun, F. Sen, Scientific Reports 10 (2020) 11699.https://doi.org/10.1038/s41598-020-68663-2

C. Chen, Z. Han, W. Lei, Y. Ding, J. Lv, M. Xia, Q. Hao, Journal of Electrochemical Science and Engineering 9 (2019) 143-152. https://doi.org/10.5599/jese.630

H. Karimi-Maleh, M. Lütfi Yola, N. Atar, Y. Orooji, F. Karimi, P. Senthil Kumar, J. Rouhi, M. Baghayeri, Journal of Colloid and Interface Science 592 (2021) 174-185. https://doi.org/10.1016/j.jcis.2021.02.066

S. Mohajeri, A. Dolati, K. Yazdanbakhsh, Journal of Electrochemical Science and Engineering 9 (2019) 207-222. https://doi.org/10.5599/jese.666

J. Ghodsi, A. A. Rafati, Y. Shoja, Advanced Journal of Chemistry-Section A 1 (2018) 39-55. https://doi.org/10.29088/SAMI/AJCA.2018.5.3955

H. Karimi-Maleh, K. Cellat, K. Arıkan, A. Savk, F. Karimi, F. Şen, Materials Chemistry and Physics 250 (2020) 123042. https://doi.org/10.1016/j.matchemphys.2020.123042

W. H. Elobeid, A. A. Elbashir, Progress in Chemical and Biochemical Research 2 (2019) 24-33.‏ https://doi.org/10.33945/SAMI/PCBR.2019.2.2433

H. Karimi-Maleh, F. Karimi, S. Malekmohammadi, N. Zakariae, R. Esmaeili, S. Rostamnia, M. Lütfi Yola, N. Atar, S. Movaghgharnezhad, S. Rajendran, A. Razmjou, Y. Orooji, S. Agarwal, V. K. Gupta, Journal of Molecular Liquids 310 (2020) 113185. https://doi.org/10.1016/j.molliq.2020.113185

H. Zhao, H. Ma, X. Li, B. Liu, R. Liu, S. Komarneni, Applied Clay Science 200 (2021) 105907. https://doi.org/10.1016/j.clay.2020.105907

K. Roja, P. R. Prasad, P. Sandhya, N. Y. Sreedhar, Journal of Electrochemical Science and Engineering 6 (2016) 253-263. https://doi.org/10.5599/jese.349

M. Coroş, S. Pruneanu, R. I. Stefan-van Staden, Journal of the electrochemical society 167 (2019) 037528. https://doi.org/10.1149/2.0282003JES

L. Fotouhi, M. Fatollahzadeh, M. M. Heravi, International Journal of Electrochemical Science 7 (2012) 3919–3928.

J. Kremeskotter, R. Wilson, D. J. Schiffrin, B. J. Luff, J. S. Wilkinson, Measurement Science and Technology 6 (1995) 1325–1328.

B. Fang, A. Gu, G. Wang, W. Wang, Y. Feng, C. Zhang, X. Zhang, ACS Applied Materials & Interfaces 12 (2009) 2829–2834. https://doi.org/10.1021/am900576z

M. B. Gholivand, L. M. Behzad, Journal of Electroanalytical Chemistry 712 (2014) 33–39. https://doi.org/10.1016/j.jelechem.2013.10.024

S. Felix, P. Kollu, S. K. Jeong, A. N. Grace, Applied Physics A 123 (2017) 1-9. https://doi.org/10.1007/s00339-017-1217-6

Y. Zhang, W. Lei, Q. Wu, X. Xia, Q. Hao, Microchimica Acta 184 (2017) 3103-3111. https://doi.org/10.1007/s00604-017-2332-y

F. Foroughi, M. Rahsepar, H. Kim, Journal of Electroanalytical Chemistry 827 (2018) 34-41. https://doi.org/10.1016/j.jelechem.2018.09.008

A. J. Bard, L. R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd edition. John Wiley & Sons, New York, USA, 2001. ISBN 978-0-471-04372-0

Published
21-10-2021