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Abstract

Intercalation anode materials are promising candidates for hybrid lithium-ion capacitors
(LICs) owing to their excellent lithium storage capacity and cycling stability. In this study, a
composite of CoNb;Os embedded in graphene nanosheets (CoNb;Os@G) was synthesized
via a two-step hydrothermal method and demonstrated for the first time as an intercalation
anode material for lithium storage. The graphene sheets form a three-dimensional porous
framework that provides abundant binding sites for the CoNb;Og particles, effectively miti-
gating particle agglomeration and volume expansion during charge-discharge cycles. The
composite with the optimal graphene content of 100 mg (CoNb20s@G-100mg) exhibited a
remarkable reversible capacity of 508.5 mA h g at a current density of 50 mA g. Furthe-
rmore, the CoNb,Os@G-100mg//activated carbon (AC) LIC, in which CoNb,0s@G-100mg
and AC are used as the anode and cathode, respectively, exhibited an energy density of
94.1 W h kg and a maximum power density of 8750 W kg within the voltage range of
0.0to 3.5 V. The device demonstrated outstanding cycling stability, with negligible capacity
loss (0.00255% per cycle) over 10,000 charge-discharge cycles. These results demonstrate
the potential of CoNb;Os@G as a high-performance anode material for energy-storage
devices, particularly in power-oriented applications.
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Introduction

Power supply systems are facing increasingly stringent requirements for long-term cycle stabi-
lity and high power and energy densities owing to the rapid development and increasing popular-
rity of hybrid electric vehicles (HEVs). Lithium-ion batteries, which store energy via insertion and
removal of lithium ions between the anode and cathode, offer high energy densities ranging from
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150 to 200 Wh kg%, but relatively low power density (<1000 W kg) owing to their sluggish elec-
trode kinetics. In contrast, supercapacitors exhibit high power densities (>10 kW kg*) and ultra-
long lifespans (>10000 cycles) because of their rapid ion adsorption/desorption or surface redox
reactions. Nonetheless, their utility is limited owing to their low energy density (<10 Wh kg?) [1-3].
Accordingly, neither supercapacitors nor lithium-ion batteries alone can fully satisfy the requirements
of power-dense devices, while the combination of these technologies increases the size and cost of the
power supply, which is unsuitable for the lightweight and compact designs of modern devices.

Lithium-ion capacitors (LICs) offer a promising solution to the challenges faced by high-perfor-
mance energy-storage devices. Asymmetric LICs combine the lithium-ion insertion/removal of lithium-
ion batteries with the rapid ion adsorption/desorption of electric double-layer capacitors, resulting in
a high power/energy density, and long cycle life (compared to supercapacitors) without sacrificing the
overall performance. LICs are therefore considered ideal power sources for high-power electronic
devices, including HEVs.

The efficacy of LICs is determined by the strategic combination of anode and cathode materials,
which aims to minimize disparities in reaction kinetics and enhance the overall device performance.
In parallel, the operational characteristics of batteries are shaped by the electrodes' energy storage
capabilities, as well as the rates of ion diffusion and the kinetics of electrochemical reactions during
charging and discharging cycles. Consequently, selecting suitable electrode materials is essential for
achieving optimal power density, energy density, and long-term cycling durability in LICs. Contempo-
rary anode materials for LICs encompass those based on intercalation, conversion, and alloying
mechanisms. Intercalation-type materials, such as titanium-based oxides [4] and carbon-based
materials, store energy through reversible ion insertion into the host lattice, accompanied by redox
reactions, thereby avoiding phase transitions and maintaining structural stability. This mechanism
ensures minimal volume variation, excellent cycling reversibility, and rapid ion diffusion kinetics. In
contrast, the electrochemical reactions of conversion-type materials (e.g. Fe20s [5] and Si) involve
complete bond cleavage and reconstruction, whereas alloy-type materials such as Sn and Ni [6]
operate via ion alloying mechanisms. Despite their high theoretical specific capacities, conversion- and
alloy-type materials exhibit substantial volume fluctuations during cycling, causing irreversible
electrode damage and accelerated capacity degradation. Intercalation-type materials are therefore
more suitable for practical LIC applications owing to their structural integrity and electrochemical
stability. Lin et al. [7,8] developed lithium-ion batteries employing niobium-based bimetallic oxides
(e.g. CrNb11029 and Mg:NbssOs7) as anode materials, which store lithium via an intercalation
mechanism (as confirmed by in-situ X-ray diffraction (XRD) spectroscopy), resulting in reversible
electron transfer numbers of 23 and 68 moles, corresponding to high theoretical specific capacities of
401 and 396 mA h g?, respectively. Similarly, CrNb11029 and MgzNbs40s7, synthesized via a solvo-
thermal method, exhibited reversible specific capacities of 343 and 338 mA h gt at 0.1 C, respectively,
with capacity losses of only 8.9 % after 400 cycles and 6.9 % after 500 cycles at 10 C, respectively,
demonstrating their high cycling stability. These results demonstrate the superior lithium-storage
performance of niobium-based bimetallic oxides relative to their titanium-based counterparts, making
them promising candidates for use as negative electrodes in LICs.

In this study, CoNb,0Os was synthesized by ionizing Nb,Os in an alkaline solution and subsequent
coprecipitation with Co ions. The obtained CoNb,Og particles were anchored onto the abundant
binding sites of graphene nanosheets, thereby enhancing dispersibility and minimizing aggregation.
Additionally, the porous graphene structure buffers volume changes during charge-discharge cycles,
inhibiting the release of bound active material and improving the structural integrity and cycling
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stability of the anode. This approach offers an efficient strategy to improve the performance of
electrode materials, thereby facilitating the practical development of energy-storage devices.

Experimental

All reagents were of analytical grade and used as received without further purification.

Synthesis of CONb,0Os@G

In a typical preparation, graphene oxide (GO) was synthesized from natural graphite via a
modified Hummers method [9,10]. Subsequently, 0.2 g of Nb,0Os and 1.5 g of KOH were dissolved in
30 mL of deionized water with continuous agitation. The obtained mixture was then placed into a
50-mL Teflon-lined stainless steel autoclave and subjected to hydrothermal treatment at 220 °C for
24 h to convert Nb,Os into [NbgO19]®. After cooling in the air, the pH was adjusted to approximately
8 using HCI (1 mol L). Separately, CoCl, (with a Co-to-Nb molar ratio of 1:2) and varying amounts
of GO (0, 50, 100, and 200 mg) were dispersed in deionized water (50 mL) and gradually added to
the [NbeO15]® solution under continuous stirring. This mixture was then transferred to a Teflon-lined
autoclave (100 mL) and heated at 220 °C for 48 h. The resulting CoNb,Os@G-x (where x is the GO
content) products were washed repeatedly with ethanol and deionized water, and thereafter
calcined at 500 °C for 2 h in a 10 % H2/90 % Ar atmosphere to achieve high crystallinity.

Preparation of electrode

The working electrode was fabricated by blending conductive carbon black, PVDF binder, and
CoNb,;0s@G active material at a mass ratio of 1:1:8. NMP solvent was introduced with constant
agitation to yield a uniform slurry. This slurry was evenly cast onto a 75 um thick Cu foil current
collector, followed by vacuum drying at 60°C for 24 h. The resulting electrode sheet was sub-
sequently punched into 14 mm diameter disks, with an active material areal loading of approxi-
mately 4 mg cm™. For the counter electrode, activated carbon was processed via an analogous
method and applied to Al foil at an elevated loading of 22 mg cm to guarantee sufficient capacity.

Characterization

The morphology and microstructure of CoNb;Os@G and CoNb,Os were examined by scanning
electron microscopy (SEM, JEOL JSM-6480, Japan) and transmission electron microscopy (TEM, FEI
Tecnai G2S-Twin, USA; Philips, Netherlands). X-ray diffraction (XRD, Rigaku TTR Ill, Japan) employing
Cu-Ka radiation (4 = 0.1514 nm) was utilized to determine the crystalline structure of the materials at
a scanning rate of 5° min™. Vibrational properties of CoNb,Os@G and CoNb,Os were investigated
using Raman spectroscopy (Renishaw InVia Reflex, UK, 532 nm laser excitation). The bulk elemental
composition was determined using a Vario Micro cube elemental analyzer (Elementar, Germany), and
the surface chemical states were assessed using X-ray photoelectron spectroscopy (XPS; Thermo
Fisher ESCALAB™ 250Xi, USA).

Electrochemical measurements

The electrochemical performance of CoNb;Os@G was evaluated using CR2032-type two-
electrode coin cells, where a lithium metal foil and AC served as the positive and negative
electrodes, respectively. The specific capacity (C, F g') of the LIC was calculated based on the
discharge duration observed in the galvanostatic charge-discharge (GCD) profile, employing
Equations (1) and (2) [11].

S =JV(t)dt (1)

C =2IS/mAV? (2)
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where S/ V s is the integral area under the discharge curve, I / A is the charge-discharge current,
m / gis the total mass of the active material in both the anode and cathode, and AV / V is the working
potential (excluding the IR drop).

Equations (3) and (4) were utilized to determine the energy density (E / Wh kg') and power
density (P / W kg), respectively [12,13]:

E=CAV%/7.2 (3)

P =3600E / At (4)
where At / s is the discharge time.

Results and discussion

Figure 1a shows the XRD patterns of G, CoNb,Og¢, and their composite (CoNb20s@G-100mg). The
diffraction pattern of G displays a broad (002) peak at 24.95°, characteristic of graphitic carbon [14,15].
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Figure 1. (a) XRD patterns and (b) Raman spectra of G, CoNb;0s, and CoNb,;0s@ G-100mg; (c) XPS survey
spectra of CoNb,0s@G-100mg; and high-resolution (d) Co 2p and (e) Nb 3d core-level XPS profiles of
CoNb;0s@G-100mg
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All reflections observed in the pattern of pristine CoNb,0s are indexed to an orthorhombic phase
(JCPDS No. 32-0304), with prominent peaks at 24.4, 30.3, 35.5, 36.1, 51.7, 53.5, 60.6 and 64.2° cor-
responding to the (130), (131), (002), (201), (330), (261), (133) and (203) planes, respectively [16,17].
All peaks characteristic of G and CoNb,O¢ appear in the XRD pattern of the CoNb,Os@G-100mg
composite, confirming its phase purity, high crystallinity, and the absence of detectable impurities.

The structural features of CoNb,Os@G were characterized by Raman spectroscopy (Figure 1b). The
spectra of the composites reveal two characteristic bands at 1350 cm™ (D band) and 1582 cm
(G band), ascribed to the disorder-related breathing modes and in-plane stretching vibrations of
sp?-hybridized carbon in graphite, respectively [18,19]. The intensity ratio (/o/ls) derived from the
spectrum of CoNb,Os@G (0.996) is higher than that derived from the spectrum of G (0.968), sug-
gesting that the incorporation of CoNb,Os introduces additional structural defects into the graphene
framework that increase the surface area and enrich defect sites, thereby promoting Li* ion adsorption
and charge-storage kinetics, which are advantageous for electrochemical applications [20,21].

The Raman spectrum of CoNb,Os exhibits characteristic vibrational modes consistent with a
columbite-type crystal structure. The low-frequency region (<300 cm™) is dominated by bending
vibrations involving multiple oxygen coordination environments. Specifically, the vi1 (Bsg) mode at
141.2 cm is attributed to coupled O-Nb-O: and Op-Nb-Op bending vibrations, whereas the vq (Ag)
mode at 218.6 cm™ arises from a combination of O-Co-O bending and O-Nb-O deformations. Two
Ag modes (vs and v7) indicative of strong coupling between Co-O stretching and O-Nb-O bending
vibrations dominate the intermediate frequency range (249.4 to 276.2 cm), highlighting the
interconnected octahedral framework. In the high-frequency region, the vs (Ag) and va (B1g) modes
at 397.8 and 480.3 cm™%, respectively, are assigned to Nb-O¢ stretching vibrations with superimposed
0O-Nb-O bending distortions. The vs; (Ag) mode at 528.8 cm™ corresponds to Nb-Oy stretching, a
characteristic of bridging oxygen. The most intense Raman peak at 872.6 cm™ (v1 (Ag)) is attributed
to the symmetric stretching of Nb-Ot bonds, consistent with terminal oxygen atoms in the columbite
structure [22-24].

The chemical states of CONb,0s@G-100mg were determined using XPS. The XPS survey spectrum
(Figure 1c) exhibits peaks corresponding to Nb, Co, O, and C elements. Peaks at 803.04 and 786.85 eV
in the high-resolution Co 2p spectrum (Figure 1d) are the satellite peaks (denoted “Sat”) of the Co
2p1/2 and Co 2ps3/2 signals, respectively. The main Co 2p1/2 and Co 2ps;2 peaks were deconvoluted into
the following four components: two attributed to Co?* at 780.5 and 796.5 eV, and two attributed to
Co3 at 781.8 and 797.3 eV. The formation of Co®* resulted from the oxidation of the material in
air [25,26]. The XPS spectrum of Nb 3d (Figure 1e) displays peaks corresponding to Nb 3ds/2; and Nb
3ds/2 at binding energies of 207.1 eV and 209.9 eV, respectively, exhibiting a spin-orbit splitting of
2.8 eV. These positions match the expected core-level energies for Nb>* [27,28]. Moreover, the high-
resolution O 1s spectrum (Figure Sla, Supplementary material) was fitted with four components
attributed to C=0, C-O, O-H, and CoNb,O¢ at 532.6, 531.7, 530.7 and 530.15 eV, respectively [29].
Fitting of the C 1s spectrum (Figure S1b) yields four peaks at 284.6, 285.5, 286.5 and 288.8 eV, assigned
to C-C, C=C, C=0, and COOH functional groups, respectively [30].

The N; adsorption-desorption isotherms of the CoNb,0s@G composites are shown in Figure S2a.
All samples exhibit type IV isotherms with H3/H4 hysteresis loops according to the IUPAC classi-
fication, suggesting the presence of slit-shaped pores commonly found in graphene-based compo-
sites. The composite with 100 mg of graphene achieves the highest N, uptake of 280 cm3 gt at a
relative pressure of approximately 1.0, indicating an increased total pore volume and specific
surface area. This enhancement is attributed to the effective inhibition of graphene restacking by
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the CoNbOs nanoparticles, leading to the formation of a new interlayer structure. The
corresponding BJH pore size distribution (Figure S2b) shows a prominent peak in the mesoporous
range (2 to 50 nm), with minor contributions from micropores (<2 nm) and macropores (>50 nm).
As the graphene content increases, the pore size distribution shifts toward larger mesopores. These
improvements underscore the synergistic role of graphene in dispersing nanoparticles, mitigating
agglomeration, and promoting the formation of accessible pores, potentially leading to enhanced
electrochemical performance.

The influence of graphene content on the microstructure is elucidated based on the SEM images
of CoNb20s@G-x (Figure S3). From Figure 2a, it can be observed that CoNb,Os@G develops a distinct
porous architecture composed of interconnected graphene sheets as the graphene content incre-
ases. This three-dimensional network provides abundant binding sites for CoNb,Os nanoparticles,
effectively suppressing their agglomeration, and enhances contact between the electrode and elec-
trolyte, thus facilitating ion transport. The homogeneous distribution of CoNb,0O¢ on the graphene
sheets was verified by energy-dispersive X-ray spectroscopy (EDS) elemental mapping (Figure 2b),

which reveals uniform spatial distributions of C, Nb, and Co throughout the CoNb;0s@G-100mg
composite.
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Figure 2. (a) SEM image; (b) elemental mapping; (c, d) TEM images; and
(e) HR-TEM image of CoNb,Os@G-100mg

TEM images (Figures 2c and d) demonstrate robust adhesion between the CoNb,0O¢ nanoparticles
and the graphene matrix, which is critical to maintain structural integrity during prolonged cycling.
The disordered carbon layers of graphene alongside the well-defined lattice fringes of crystalline
CoNb20¢ are shown in the corresponding high-resolution TEM (HR-TEM) image (Figure 2e). The
measured d-spacing of the lattice fringes, corresponding to the (261), (131) and (130) planes of
CoNb,0¢, are 0.171, 0.297 and 0.366 nm, respectively, which is consistent with the XRD analysis and
confirms the presence of the orthorhombic phase of CoNb,Os.

Figure 3 compares the electrochemical performances of the CoNb,Os@G-x composites. At a scan
rate of 0.4 mV s, the cyclic voltammetry (CV) curve of CoNb20s@G-100mg (Figure 3a) exhibits the
largest enclosed area, among those of the four composites, demonstrating its superior charge-

6 (co) T



Y. Hai et al. J. Electrochem. Sci. Eng. 00(0) (2025) 2951

storage capability. Notably, the peak potential separation (AV) between the cathodic and anodic
peaks systematically decreases with increasing graphene content, reflecting reduced polarization
owing to the improved conductivity induced by graphene doping. Figure 3b presents the rate
capability of the CoNb,Os@G-x composites under current densities varying between 50 and 2000
mA g1, At a current density of 50 mA g%, the composites with x =0, 50, 100 and 200 exhibit capacities
of 428.2, 473.7, 508.5 and 397.3 mA h g1, respectively. At a higher current density of 2000 mA g™,
these capacities are reduced to 73.3, 159.8, 200.3 and 139.8 mA h g%, respectively. Upon returning
to 50 mA g, CoNb,0s@G-100mg outperforms the other composites, demonstrating the highest
capacity retention of 90 %.
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Figure 3. Electrochemical performance of CoNb,Os@G-x: (a) CV curves at scan rate of 0.4 mV s’
1. (b) rate performance at current densities from 50 to 2000 mA g’*; (c) long-term cycle life at a
current density of 500 mA g; and (d,e) charge-discharge curves during different cycles at a
current density of 500 mA g

The long-term cycling stability of the CoNb,0Os@G-x composite (Figure 3c), in combination with
the corresponding charge-discharge curves (Figures 3d and 3e), shows that the capacity of the
composite initially decreases, then increases before eventually stabilizing. This behavior is
attributed to the formation of a solid-electrolyte interphase and the irreversible reaction of Li* with
functional groups (-OH, etc.) on the surface of graphene. The fully activated CoNb,Os@G-x
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composites exhibit minimal capacity fading over 500 cycles, demonstrating excellent cycling
stability. In particularly, CoNb,Os@G-100mg demonstrates the highest capacity, primarily owing to
the abundance of active sites afforded by graphene, and prevents the agglomeration of CoNb,Os.
However, excessive graphene doping can reduce the capacity of the composite owing to the
relatively low Li* storage capacity of graphene.

The reaction kinetics of CONb,Os@G-100mg were further analyzed by CV. The CV curve of the
sample (Figure 4a) shows a pair of redox peaks at 1.25 and 1.75 V, corresponding to a reversible
electrochemical reaction involving the Nb*/Nb>* and Nb3*/Nb* redox couples. This reaction leads
to the intercalation and deintercalation of Li* (Equation (5)) [31,32]:

CoNb,0g + nLi* + ne” = LinCoNb;06 (0 < n < 4) (5)

Here, n denotes the mole fraction of the intercalated Li*. Additionally, the high rate performance
is elucidated based on an analysis of the redox pseudocapacitance contribution of the CoNb,Os@G-
-100 mg electrode.
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Figure 4. (a) CV curves of CoNb,0s@G-100mg at various scan rates from 0.2 to 1.0 mV s’; (b) relationship
between lg i, and Ig v; (c) separation of the capacitive and diffusion-controlled currents in CoNb;Os@ G-
100mg at a scan rate of 1 mV s; and (d) ratio of the capacitive- and diffusion-controlled charge at various
scan rates

Equation (6) typically characterizes the dependence of the response current (i) on the scan
rate (V) [33,34]:

i=a (0.5<bh<1) (6)
where g and b are adjustable parameters. Applying a logarithmic operation to Equation (5) gives
Equation (7):

lgi=blgv+Ilga(0.5<bh<1) (7)

The b parameter is derived from the gradient of the log i versus log vplot, functioning as a descriptor
of the dominant charge storage process. Higher b values indicate a greater similarity between the
operating charge-storage mechanism and an ideal capacitive process. The b values of CoNb,Os@G-
100mg are approximately 0.83 and 0.85 at the reduction and oxidation peaks, respectively (Figure 4b),
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which implies that the charge-storage process is primarily governed by a capacitive mechanism, with a
diffusion-controlled mechanism playing a minor role. In particular, the capacitive and diffusion-
controlled charge-storage processes can be further quantified using Equation (8) [35,36]:

i(V) = ky v+ ko M2 (8)

At a fixed potential V, the observed current i arises from the combination of capacitive contri-
bution (k:1) and diffusion-controlled component (k;1*/2). The proportions of capacitive and dif-
fusion-limited mechanisms were evaluated through cyclic voltammetry (CV) conducted at a scan
rate of 1 mV s (Figure 4c). The capacitive mechanism constitutes 79.7 % of the overall capacity,
suggesting efficient capacitive kinetics in CoNb,Os@G-100mg that give rise to its superior rate
capability. Similarly, at scan rates of 0.2, 0.4, 0.6 and 0.8 mV s}, the capacitive effect accounts for
62.7, 68.7, 74.5 and 77.4 % of the total capacity, respectively.

Based on the excellent Li storage capacity of the CoNb,Os@G-100mg electrode, an LIC was
assembled using CoONb,0Os@G-100mg and AC as the anode and cathode, respectively, usinga 1 M LiPFg
electrolyte in a mixture of ethylene carbonate and diethyl carbonate (1:1, v/v) to evaluate its
feasibility. The electrochemical performance of the AC electrode in the half-cell is shown in Figure S4.
The optimal mass ratio of CoNb,0s@G-100mg to AC is 1:6, as determined by Equation (9) [37,38]:

m’/m* = C'AV* | CAV (9)

Figure 5a shows the CV curves of the assembled CoNb,0s@G-100mg//AC LIC in different operat-
ing voltage windows. The response current remains stable between 0.0 and 3.5V, indicating the
absence of electrolyte decomposition within this voltage range. The CV curves at various scan rates

(Figure 5b) exhibit a quasi-rectangular shape attributed to the distinct reaction kinetics of the anode
and cathode.
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As the scan rate increased, the current response correspondingly enhanced, with minimal distortion
in the CV profile even at an elevated rate of 20 mV s, highlighting the device's robust stability during Li*
insertion/extraction processes. The GCD profiles of the devices display a nonlinear triangular form across
different current densities, which is attributable to the distinct charge-storage behaviors of the
intercalation-type cathode and the electric double-layer anode. The discharge profile exhibits a limited
voltage drop, signifying superior electrode conductivity that minimizes the device's internal resistance.
The device's specific capacitance, calculated via Equation (2), is illustrated in Figure 5d. For the
CoNb20s@G//AC LIC, the specific capacitances at current densities of 0.05, 0.1,0.2,0.5,1,2 and 5 A g*
were measured as 55.3,52.1,50.7, 48.8, 48.2, 44.7 and 39.4 F g%, respectively. The modest capacitance
decay observed at higher current densities underscores the device's outstanding rate capability.

Figure 5e presents the Ragone plot, illustrating the trade-off between power and energy
densities. It reveals that the CoONb206@G-100mg//AC lithium-ion capacitor achieves a peak energy
density of 94.1 Wh kg-1 at a power density of 87.5 W kg!, alongside a maximum power density of
8750 W kg at an energy density of 67.1 Wh kg'. These performance metrics outperform those
reported for comparable metal-oxide-based LICs (Table 1) [39-45]. The evaluation of the cyclic
performance of the CoNb;Os@G-100mg//AC LIC is shown in Figure 5f. At a current density of
1 A g, the device exhibits a capacity retention of 74.5 % after 10,000 charge-discharge cycles, with
a cycle-to-cycle capacitance loss of only 0.00255 %, demonstrating excellent cycling stability. The
CoNb0s@G-100mg//AC LIC was directly connected to five yellow light-emitting diodes (LEDs) to
further assess its practical applicability. All five LEDs were powered and continuously illuminated for
10 min (Figure 5g).

Table 1. Comparison of the electrochemical performance of the CoNb,Os@G//AC LIC with those of some

existing LICs
Cycling stability, % Maximum energy Maximum power

Anode//cathode Voltage range, V (Cycling number)  density, Wh kg!  density, W kg! Ref.

CuBi204//AC 0.0to 3.0 86 (1500) 24 300 [39]

LiMn204/graphene//AC 0.0to 2.3 90.6 (500) 38.8 186.5 [40]

TiO:@graphene//graphene 0.0to 3.0 68 (1000) 72 2000 [41]

TiNb207//AC 1.0to0 3.0 84 (3000) 43 3000 [42]

LisTisO12/C//PGM 1.0to0 3.0 65 (1000) 40 8300 [43]

H2Ti11.85Nbo.15025//AC \ 84 (10000) 243 5821 [44]

TizsC2Tx/CNT//AC 1.0to 4.0 81.3 (5000) 67 5797 [45]
CoNb20s@G-100mg//AC LIC 0.0to 3.5 74.5 (10000) 94.1 8750 Our work

Conclusions

CoNb,0s@G was prepared via a two-step hydrothermal method, and its lithium-storage perfor-
mance was further optimized by adjusting the graphene content. The particle size of CoNb;0s ranged
from 50 to 60 nm. With a graphene content of 100 mg, CoNb,0s@G-100mg exhibited the highest
specific capacity of 508.5 mA h g at a current density of 50 mA g along with an outstanding rate
capability. Additionally, a hybrid LIC, with an anode and cathode consisting of CoONb;0s@G-100mg and
AC, respectively, achieved maximum energy and power densities of 94.1 W h kg™ and 8750 W kg,
respectively, in the operating voltage range of 0.0 to 3.5 V, along with a capacity loss of only 25.5 %
after 10,000 cycles, demonstrating excellent cycling performance. The CoNb,Os@G anode holds signi-
ficant potential applications in LICs with high energy, fast charging, and high stability. Furthermore,
our findings offer valuable insights that will inform the design of next-generation high-performance
energy storage devices.
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