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Abstract 
Intercalation anode materials are promising candidates for hybrid lithium-ion capacitors 
(LICs) owing to their excellent lithium storage capacity and cycling stability. In this study, a 
composite of CoNb2O6 embedded in graphene nanosheets (CoNb2O6@G) was synthesized 
via a two-step hydrothermal method and demonstrated for the first time as an intercalation 
anode material for lithium storage. The graphene sheets form a three-dimensional porous 
framework that provides abundant binding sites for the CoNb2O6 particles, effectively miti-
gating particle agglomeration and volume expansion during charge-discharge cycles. The 
composite with the optimal graphene content of 100 mg (CoNb2O6@G-100mg) exhibited a 
remarkable reversible capacity of 508.5 mA h g-1 at a current density of 50 mA g-1. Furthe-
rmore, the CoNb2O6@G-100mg//activated carbon (AC) LIC, in which CoNb2O6@G-100mg 
and AC are used as the anode and cathode, respectively, exhibited an energy density of 
94.1 W h kg-1 and a maximum power density of 8750 W kg-1 within the voltage range of 
0.0 to 3.5 V. The device demonstrated outstanding cycling stability, with negligible capacity 
loss (0.00255% per cycle) over 10,000 charge-discharge cycles. These results demonstrate 
the potential of CoNb2O6@G as a high-performance anode material for energy-storage 
devices, particularly in power-oriented applications. 
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Introduction 

Power supply systems are facing increasingly stringent requirements for long-term cycle stabi-

lity and high power and energy densities owing to the rapid development and increasing popular-

rity of hybrid electric vehicles (HEVs). Lithium-ion batteries, which store energy via insertion and 

removal of lithium ions between the anode and cathode, offer high energy densities ranging from 
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150 to 200 Wh kg-1, but relatively low power density (<1000 W kg-1) owing to their sluggish elec-

trode kinetics. In contrast, supercapacitors exhibit high power densities (>10 kW kg -1) and ultra-

long lifespans (>10000 cycles) because of their rapid ion adsorption/desorption or surface redox 

reactions. Nonetheless, their utility is limited owing to their low energy density (<10 Wh kg-1) [1-3]. 

Accordingly, neither supercapacitors nor lithium-ion batteries alone can fully satisfy the requirements 

of power-dense devices, while the combination of these technologies increases the size and cost of the 

power supply, which is unsuitable for the lightweight and compact designs of modern devices. 

Lithium-ion capacitors (LICs) offer a promising solution to the challenges faced by high-perfor-

mance energy-storage devices. Asymmetric LICs combine the lithium-ion insertion/removal of lithium-

ion batteries with the rapid ion adsorption/desorption of electric double-layer capacitors, resulting in 

a high power/energy density, and long cycle life (compared to supercapacitors) without sacrificing the 

overall performance. LICs are therefore considered ideal power sources for high-power electronic 

devices, including HEVs. 

The efficacy of LICs is determined by the strategic combination of anode and cathode materials, 

which aims to minimize disparities in reaction kinetics and enhance the overall device performance. 

In parallel, the operational characteristics of batteries are shaped by the electrodes' energy storage 

capabilities, as well as the rates of ion diffusion and the kinetics of electrochemical reactions during 

charging and discharging cycles. Consequently, selecting suitable electrode materials is essential for 

achieving optimal power density, energy density, and long-term cycling durability in LICs. Contempo-

rary anode materials for LICs encompass those based on intercalation, conversion, and alloying 

mechanisms. Intercalation-type materials, such as titanium-based oxides [4] and carbon-based 

materials, store energy through reversible ion insertion into the host lattice, accompanied by redox 

reactions, thereby avoiding phase transitions and maintaining structural stability. This mechanism 

ensures minimal volume variation, excellent cycling reversibility, and rapid ion diffusion kinetics. In 

contrast, the electrochemical reactions of conversion-type materials (e.g. Fe2O3 [5] and Si) involve 

complete bond cleavage and reconstruction, whereas alloy-type materials such as Sn and Ni [6] 

operate via ion alloying mechanisms. Despite their high theoretical specific capacities, conversion- and 

alloy-type materials exhibit substantial volume fluctuations during cycling, causing irreversible 

electrode damage and accelerated capacity degradation. Intercalation-type materials are therefore 

more suitable for practical LIC applications owing to their structural integrity and electrochemical 

stability. Lin et al. [7,8] developed lithium-ion batteries employing niobium-based bimetallic oxides 

(e.g. CrNb11O29 and Mg2Nb34O87) as anode materials, which store lithium via an intercalation 

mechanism (as confirmed by in-situ X-ray diffraction (XRD) spectroscopy), resulting in reversible 

electron transfer numbers of 23 and 68 moles, corresponding to high theoretical specific capacities of 

401 and 396 mA h g-1, respectively. Similarly, CrNb11O29 and Mg2Nb34O87, synthesized via a solvo-

thermal method, exhibited reversible specific capacities of 343 and 338 mA h g-1 at 0.1 C, respectively, 

with capacity losses of only 8.9 % after 400 cycles and 6.9 % after 500 cycles at 10 C, respectively, 

demonstrating their high cycling stability. These results demonstrate the superior lithium-storage 

performance of niobium-based bimetallic oxides relative to their titanium-based counterparts, making 

them promising candidates for use as negative electrodes in LICs. 

In this study, CoNb2O6 was synthesized by ionizing Nb2O5 in an alkaline solution and subsequent 

coprecipitation with Co ions. The obtained CoNb2O6 particles were anchored onto the abundant 

binding sites of graphene nanosheets, thereby enhancing dispersibility and minimizing aggregation. 

Additionally, the porous graphene structure buffers volume changes during charge-discharge cycles, 

inhibiting the release of bound active material and improving the structural integrity and cycling 
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stability of the anode. This approach offers an efficient strategy to improve the performance of 

electrode materials, thereby facilitating the practical development of energy-storage devices. 

Experimental  

All reagents were of analytical grade and used as received without further purification.  

Synthesis of CoNb2O6@G 

In a typical preparation, graphene oxide (GO) was synthesized from natural graphite via a 

modified Hummers method [9,10]. Subsequently, 0.2 g of Nb2O5 and 1.5 g of KOH were dissolved in 

30 mL of deionized water with continuous agitation. The obtained mixture was then placed into a 

50-mL Teflon-lined stainless steel autoclave and subjected to hydrothermal treatment at 220 °C for 

24 h to convert Nb2O5 into [Nb6O19]8-. After cooling in the air, the pH was adjusted to approximately 

8 using HCl (1 mol L-1). Separately, CoCl2 (with a Co-to-Nb molar ratio of 1:2) and varying amounts 

of GO (0, 50, 100, and 200 mg) were dispersed in deionized water (50 mL) and gradually added to 

the [Nb6O19]8- solution under continuous stirring. This mixture was then transferred to a Teflon-lined 

autoclave (100 mL) and heated at 220 °C for 48 h. The resulting CoNb2O6@G-x (where x is the GO 

content) products were washed repeatedly with ethanol and deionized water, and thereafter 

calcined at 500 °C for 2 h in a 10 % H2/90 % Ar atmosphere to achieve high crystallinity. 

Preparation of electrode 

The working electrode was fabricated by blending conductive carbon black, PVDF binder, and 

CoNb2O6@G active material at a mass ratio of 1:1:8. NMP solvent was introduced with constant 

agitation to yield a uniform slurry. This slurry was evenly cast onto a 75 μm thick Cu foil current 

collector, followed by vacuum drying at 60°C for 24 h. The resulting electrode sheet was sub-

sequently punched into 14 mm diameter disks, with an active material areal loading of approxi-

mately 4 mg cm-2. For the counter electrode, activated carbon was processed via an analogous 

method and applied to Al foil at an elevated loading of 22 mg cm-2 to guarantee sufficient capacity. 

Characterization 

The morphology and microstructure of CoNb2O6@G and CoNb2O6 were examined by scanning 

electron microscopy (SEM, JEOL JSM-6480, Japan) and transmission electron microscopy (TEM, FEI 

Tecnai G2S-Twin, USA; Philips, Netherlands). X-ray diffraction (XRD, Rigaku TTR III, Japan) employing 

Cu-Kα radiation ( = 0.1514 nm) was utilized to determine the crystalline structure of the materials at 

a scanning rate of 5° min-1. Vibrational properties of CoNb2O6@G and CoNb2O6 were investigated 

using Raman spectroscopy (Renishaw InVia Reflex, UK, 532 nm laser excitation). The bulk elemental 

composition was determined using a Vario Micro cube elemental analyzer (Elementar, Germany), and 

the surface chemical states were assessed using X-ray photoelectron spectroscopy (XPS; Thermo 

Fisher ESCALABTM 250Xi, USA). 

Electrochemical measurements 

The electrochemical performance of CoNb2O6@G was evaluated using CR2032-type two-

electrode coin cells, where a lithium metal foil and AC served as the positive and negative 

electrodes, respectively. The specific capacity (C, F g-1) of the LIC was calculated based on the 

discharge duration observed in the galvanostatic charge-discharge (GCD) profile, employing 

Equations (1) and (2) [11]. 

S = V(t)dt (1) 

C = 2IS/mV2 (2) 
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where S / V s is the integral area under the discharge curve, I / A is the charge-discharge current, 

m / g is the total mass of the active material in both the anode and cathode, and ΔV / V is the working 

potential (excluding the IR drop). 

Equations (3) and (4) were utilized to determine the energy density (E / Wh kg-1) and power 

density (P / W kg-1), respectively [12,13]: 

E = CV2/7.2 (3) 

P = 3600E / t (4) 

where Δt / s is the discharge time. 

Results and discussion 

Figure 1a shows the XRD patterns of G, CoNb2O6, and their composite (CoNb2O6@G-100mg). The 

diffraction pattern of G displays a broad (002) peak at 24.95°, characteristic of graphitic carbon [14,15].  

 
Figure 1. (a) XRD patterns and (b) Raman spectra of G, CoNb2O6, and CoNb2O6@G-100mg; (c) XPS survey 

spectra of CoNb2O6@G-100mg; and high-resolution (d) Co 2p and (e) Nb 3d core-level XPS profiles of 
CoNb2O6@G-100mg 
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All reflections observed in the pattern of pristine CoNb2O6 are indexed to an orthorhombic phase 

(JCPDS No. 32-0304), with prominent peaks at 24.4, 30.3, 35.5, 36.1, 51.7, 53.5, 60.6 and 64.2° cor-

responding to the (130), (131), (002), (201), (330), (261), (133) and (203) planes, respectively [16,17]. 

All peaks characteristic of G and CoNb2O6 appear in the XRD pattern of the CoNb2O6@G-100mg 

composite, confirming its phase purity, high crystallinity, and the absence of detectable impurities. 

The structural features of CoNb2O6@G were characterized by Raman spectroscopy (Figure 1b). The 

spectra of the composites reveal two characteristic bands at 1350 cm-1 (D band) and 1582 cm-1 

(G band), ascribed to the disorder-related breathing modes and in-plane stretching vibrations of  

sp2-hybridized carbon in graphite, respectively [18,19]. The intensity ratio (ID/IG) derived from the 

spectrum of CoNb2O6@G (0.996) is higher than that derived from the spectrum of G (0.968), sug-

gesting that the incorporation of CoNb2O6 introduces additional structural defects into the graphene 

framework that increase the surface area and enrich defect sites, thereby promoting Li+ ion adsorption 

and charge-storage kinetics, which are advantageous for electrochemical applications [20,21]. 

The Raman spectrum of CoNb2O6 exhibits characteristic vibrational modes consistent with a 

columbite-type crystal structure. The low-frequency region (<300 cm-1) is dominated by bending 

vibrations involving multiple oxygen coordination environments. Specifically, the v11 (B3g) mode at 

141.2 cm-1 is attributed to coupled Oc-Nb-Ot and Ob-Nb-Ob bending vibrations, whereas the v9 (Ag) 

mode at 218.6 cm-1 arises from a combination of O-Co-O bending and O-Nb-O deformations. Two 

Ag modes (v8 and v7) indicative of strong coupling between Co-O stretching and O-Nb-O bending 

vibrations dominate the intermediate frequency range (249.4 to 276.2 cm-1), highlighting the 

interconnected octahedral framework. In the high-frequency region, the v5 (Ag) and v4 (B1g) modes 

at 397.8 and 480.3 cm-1, respectively, are assigned to Nb-Oc stretching vibrations with superimposed 

O-Nb-O bending distortions. The v3 (Ag) mode at 528.8 cm-1 corresponds to Nb-Ob stretching, a 

characteristic of bridging oxygen. The most intense Raman peak at 872.6 cm-1 (v1 (Ag)) is attributed 

to the symmetric stretching of Nb-Ot bonds, consistent with terminal oxygen atoms in the columbite 

structure [22-24]. 

The chemical states of CoNb2O6@G-100mg were determined using XPS. The XPS survey spectrum 

(Figure 1c) exhibits peaks corresponding to Nb, Co, O, and C elements. Peaks at 803.04 and 786.85 eV 

in the high-resolution Co 2p spectrum (Figure 1d) are the satellite peaks (denoted “Sat”) of the Co 

2p1/2 and Co 2p3/2 signals, respectively. The main Co 2p1/2 and Co 2p3/2 peaks were deconvoluted into 

the following four components: two attributed to Co2+ at 780.5 and 796.5 eV, and two attributed to 

Co3+ at 781.8 and 797.3 eV. The formation of Co3+ resulted from the oxidation of the material in 

air [25,26]. The XPS spectrum of Nb 3d (Figure 1e) displays peaks corresponding to Nb 3d5/2 and Nb 

3d3/2 at binding energies of 207.1 eV and 209.9 eV, respectively, exhibiting a spin-orbit splitting of 

2.8 eV. These positions match the expected core-level energies for Nb5+ [27,28]. Moreover, the high-

resolution O 1s spectrum (Figure S1a, Supplementary material) was fitted with four components 

attributed to C=O, C-O, O-H, and CoNb2O6 at 532.6, 531.7, 530.7 and 530.15 eV, respectively [29]. 

Fitting of the C 1s spectrum (Figure S1b) yields four peaks at 284.6, 285.5, 286.5 and 288.8 eV, assigned 

to C-C, C=C, C=O, and COOH functional groups, respectively [30]. 

The N2 adsorption-desorption isotherms of the CoNb2O6@G composites are shown in Figure S2a. 

All samples exhibit type IV isotherms with H3/H4 hysteresis loops according to the IUPAC classi-

fication, suggesting the presence of slit-shaped pores commonly found in graphene-based compo-

sites. The composite with 100 mg of graphene achieves the highest N2 uptake of 280 cm3 g-1 at a 

relative pressure of approximately 1.0, indicating an increased total pore volume and specific 

surface area. This enhancement is attributed to the effective inhibition of graphene restacking by 
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the CoNb2O6 nanoparticles, leading to the formation of a new interlayer structure. The 

corresponding BJH pore size distribution (Figure S2b) shows a prominent peak in the mesoporous 

range (2 to 50 nm), with minor contributions from micropores (<2 nm) and macropores (>50 nm). 

As the graphene content increases, the pore size distribution shifts toward larger mesopores. These 

improvements underscore the synergistic role of graphene in dispersing nanoparticles, mitigating 

agglomeration, and promoting the formation of accessible pores, potentially leading to enhanced 

electrochemical performance. 

The influence of graphene content on the microstructure is elucidated based on the SEM images 

of CoNb2O6@G-x (Figure S3). From Figure 2a, it can be observed that CoNb2O6@G develops a distinct 

porous architecture composed of interconnected graphene sheets as the graphene content incre-

ases. This three-dimensional network provides abundant binding sites for CoNb2O6 nanoparticles, 

effectively suppressing their agglomeration, and enhances contact between the electrode and elec-

trolyte, thus facilitating ion transport. The homogeneous distribution of CoNb2O6 on the graphene 

sheets was verified by energy-dispersive X-ray spectroscopy (EDS) elemental mapping (Figure 2b), 

which reveals uniform spatial distributions of C, Nb, and Co throughout the CoNb2O6@G-100mg 

composite. 

 
Figure 2. (a) SEM image; (b) elemental mapping; (c, d) TEM images; and  

(e) HR-TEM image of CoNb2O6@G-100mg 

TEM images (Figures 2c and d) demonstrate robust adhesion between the CoNb2O6 nanoparticles 

and the graphene matrix, which is critical to maintain structural integrity during prolonged cycling. 

The disordered carbon layers of graphene alongside the well-defined lattice fringes of crystalline 

CoNb2O6 are shown in the corresponding high-resolution TEM (HR-TEM) image (Figure 2e). The 

measured d-spacing of the lattice fringes, corresponding to the (261), (131) and (130) planes of 

CoNb2O6, are 0.171, 0.297 and 0.366 nm, respectively, which is consistent with the XRD analysis and 

confirms the presence of the orthorhombic phase of CoNb2O6. 

Figure 3 compares the electrochemical performances of the CoNb2O6@G-x composites. At a scan 

rate of 0.4 mV s-1, the cyclic voltammetry (CV) curve of CoNb2O6@G-100mg (Figure 3a) exhibits the 

largest enclosed area, among those of the four composites, demonstrating its superior charge-
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storage capability. Notably, the peak potential separation (ΔV) between the cathodic and anodic 

peaks systematically decreases with increasing graphene content, reflecting reduced polarization 

owing to the improved conductivity induced by graphene doping. Figure 3b presents the rate 

capability of the CoNb2O6@G-x composites under current densities varying between 50 and 2000 

mA g-1. At a current density of 50 mA g-1, the composites with x = 0, 50, 100 and 200 exhibit capacities 

of 428.2, 473.7, 508.5 and 397.3 mA h g-1, respectively. At a higher current density of 2000 mA g-1, 

these capacities are reduced to 73.3, 159.8, 200.3 and 139.8 mA h g-1, respectively. Upon returning 

to 50 mA g-1, CoNb2O6@G-100mg outperforms the other composites, demonstrating the highest 

capacity retention of 90 %. 

 
Figure 3. Electrochemical performance of CoNb2O6@G-x: (a) CV curves at scan rate of 0.4 mV s-

1; (b) rate performance at current densities from 50 to 2000 mA g-1; (c) long-term cycle life at a 
current density of 500 mA g-1; and (d,e) charge-discharge curves during different cycles at a 

current density of 500 mA g-1 

The long-term cycling stability of the CoNb2O6@G-x composite (Figure 3c), in combination with 

the corresponding charge-discharge curves (Figures 3d and 3e), shows that the capacity of the 

composite initially decreases, then increases before eventually stabilizing. This behavior is 

attributed to the formation of a solid-electrolyte interphase and the irreversible reaction of Li+ with 

functional groups (-OH, etc.) on the surface of graphene. The fully activated CoNb2O6@G-x 
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composites exhibit minimal capacity fading over 500 cycles, demonstrating excellent cycling 

stability. In particularly, CoNb2O6@G-100mg demonstrates the highest capacity, primarily owing to 

the abundance of active sites afforded by graphene, and prevents the agglomeration of CoNb2O6. 

However, excessive graphene doping can reduce the capacity of the composite owing to the 

relatively low Li+ storage capacity of graphene. 

The reaction kinetics of CoNb2O6@G-100mg were further analyzed by CV. The CV curve of the 

sample (Figure 4a) shows a pair of redox peaks at 1.25 and 1.75 V, corresponding to a reversible 

electrochemical reaction involving the Nb4+/Nb5+ and Nb3+/Nb4+ redox couples. This reaction leads 

to the intercalation and deintercalation of Li+ (Equation (5)) [31,32]: 

CoNb2O6 + nLi+ + ne- = LinCoNb2O6 (0  n  4) (5) 

Here, n denotes the mole fraction of the intercalated Li+. Additionally, the high rate performance 

is elucidated based on an analysis of the redox pseudocapacitance contribution of the CoNb2O6@G- 

-100 mg electrode.  

 
Figure 4. (a) CV curves of CoNb2O6@G-100mg at various scan rates from 0.2 to 1.0 mV s-1; (b) relationship 

between lg ip and lg v; (c) separation of the capacitive and diffusion-controlled currents in CoNb2O6@G-
100mg at a scan rate of 1 mV s-1; and (d) ratio of the capacitive- and diffusion-controlled charge at various 

scan rates 

Equation (6) typically characterizes the dependence of the response current (i) on the scan 

rate () [33,34]: 

i = ab (0.5  b  1) (6) 

where a and b are adjustable parameters. Applying a logarithmic operation to Equation (5) gives 

Equation (7): 

lg i = b lg  + lg a (0.5  b  1) (7) 

The b parameter is derived from the gradient of the log i versus log  plot, functioning as a descriptor 

of the dominant charge storage process. Higher b values indicate a greater similarity between the 

operating charge-storage mechanism and an ideal capacitive process. The b values of CoNb2O6@G-

100mg are approximately 0.83 and 0.85 at the reduction and oxidation peaks, respectively (Figure 4b), 



Y. Hai et al. J. Electrochem. Sci. Eng. 00(0) (2025) 2951 

https://doi.org/10.5599/jese.2951  9 

which implies that the charge-storage process is primarily governed by a capacitive mechanism, with a 

diffusion-controlled mechanism playing a minor role. In particular, the capacitive and diffusion-

controlled charge-storage processes can be further quantified using Equation (8) [35,36]: 

i(V) = k1 + k21/2 (8) 

At a fixed potential V, the observed current i arises from the combination of capacitive contri-

bution (k₁) and diffusion-controlled component (k₂1/2). The proportions of capacitive and dif-

fusion-limited mechanisms were evaluated through cyclic voltammetry (CV) conducted at a scan 

rate of 1 mV s-1 (Figure 4c). The capacitive mechanism constitutes 79.7 % of the overall capacity, 

suggesting efficient capacitive kinetics in CoNb2O6@G-100mg that give rise to its superior rate 

capability. Similarly, at scan rates of 0.2, 0.4, 0.6 and 0.8 mV s-1, the capacitive effect accounts for 

62.7, 68.7, 74.5 and 77.4 % of the total capacity, respectively. 

Based on the excellent Li storage capacity of the CoNb2O6@G-100mg electrode, an LIC was 

assembled using CoNb2O6@G-100mg and AC as the anode and cathode, respectively, using a 1 M LiPF6 

electrolyte in a mixture of ethylene carbonate and diethyl carbonate (1:1, v/v) to evaluate its 

feasibility. The electrochemical performance of the AC electrode in the half-cell is shown in Figure S4. 

The optimal mass ratio of CoNb2O6@G-100mg to AC is 1:6, as determined by Equation (9) [37,38]: 

m-/m+ = C+V+ / C-V- (9) 

Figure 5a shows the CV curves of the assembled CoNb2O6@G-100mg//AC LIC in different operat-

ing voltage windows. The response current remains stable between 0.0 and 3.5 V, indicating the 

absence of electrolyte decomposition within this voltage range. The CV curves at various scan rates 

(Figure 5b) exhibit a quasi-rectangular shape attributed to the distinct reaction kinetics of the anode 

and cathode.  

 
Figure 5. Electrochemical properties of CoNb2O6@G-100mg//AC LIC: (a) CV curves in voltage window from 

0.0 to 3.8 V; (b) CV scans at rates of 0.5 to 20 mV s-1; (c) GCD curves at densities of 0.05 to 5.0 A g-1;  
(d) specific capacitance vs. current density; (e) Ragone plots; (f) Cycling stability and Coulombic efficiency at 

1 A g-1; (g) Photo of LEDs powered by CoNb2O6@G-100mg//AC LIC 
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As the scan rate increased, the current response correspondingly enhanced, with minimal distortion 

in the CV profile even at an elevated rate of 20 mV s-1, highlighting the device's robust stability during Li+ 

insertion/extraction processes. The GCD profiles of the devices display a nonlinear triangular form across 

different current densities, which is attributable to the distinct charge-storage behaviors of the 

intercalation-type cathode and the electric double-layer anode. The discharge profile exhibits a limited 

voltage drop, signifying superior electrode conductivity that minimizes the device's internal resistance. 

The device's specific capacitance, calculated via Equation (2), is illustrated in Figure 5d. For the 

CoNb2O6@G//AC LIC, the specific capacitances at current densities of 0.05, 0.1, 0.2, 0.5, 1, 2 and 5 A g-1 

were measured as 55.3, 52.1, 50.7, 48.8, 48.2, 44.7 and 39.4 F g-1, respectively. The modest capacitance 

decay observed at higher current densities underscores the device's outstanding rate capability. 

Figure 5e presents the Ragone plot, illustrating the trade-off between power and energy 

densities. It reveals that the CoNb2O6@G-100mg//AC lithium-ion capacitor achieves a peak energy 

density of 94.1 Wh kg-1 at a power density of 87.5 W kg-1, alongside a maximum power density of 

8750 W kg-1 at an energy density of 67.1 Wh kg-1. These performance metrics outperform those 

reported for comparable metal-oxide-based LICs (Table 1) [39-45]. The evaluation of the cyclic 

performance of the CoNb2O6@G-100mg//AC LIC is shown in Figure 5f. At a current density of  

1 A g-1, the device exhibits a capacity retention of 74.5 % after 10,000 charge-discharge cycles, with 

a cycle-to-cycle capacitance loss of only 0.00255 %, demonstrating excellent cycling stability. The 

CoNb2O6@G-100mg//AC LIC was directly connected to five yellow light-emitting diodes (LEDs) to 

further assess its practical applicability. All five LEDs were powered and continuously illuminated for 

10 min (Figure 5g). 

Table 1. Comparison of the electrochemical performance of the CoNb2O6@G//AC LIC with those of some 
existing LICs 

Anode//cathode Voltage range, V 
Cycling stability, % 
(Cycling number) 

Maximum energy 
density, W h kg-1 

Maximum power 
density, W kg-1 

Ref. 

CuBi2O4//AC 0.0 to 3.0 86 (1500) 24 300 [39] 

LiMn2O4/graphene//AC 0.0 to 2.3 90.6 (500) 38.8 186.5 [40] 

TiO2@graphene//graphene 0.0 to 3.0 68 (1000) 72 2000 [41] 

TiNb2O7//AC 1.0 to 3.0 84 (3000) 43 3000 [42] 

Li4Ti5O12/C//PGM 1.0 to 3.0 65 (1000) 40 8300 [43] 

H2Ti11.85Nb0.15O25//AC \ 84 (10000) 24.3 5821 [44] 

Ti3C2Tx/CNT//AC 1.0 to 4.0 81.3 (5000) 67 5797 [45] 

CoNb2O6@G-100mg//AC LIC 0.0 to 3.5 74.5 (10000) 94.1 8750 Our work 

Conclusions 

CoNb2O6@G was prepared via a two-step hydrothermal method, and its lithium-storage perfor-

mance was further optimized by adjusting the graphene content. The particle size of CoNb2O6 ranged 

from 50 to 60 nm. With a graphene content of 100 mg, CoNb2O6@G-100mg exhibited the highest 

specific capacity of 508.5 mA h g-1 at a current density of 50 mA g-1 along with an outstanding rate 

capability. Additionally, a hybrid LIC, with an anode and cathode consisting of CoNb2O6@G-100mg and 

AC, respectively, achieved maximum energy and power densities of 94.1 W h kg-1 and 8750 W kg-1, 

respectively, in the operating voltage range of 0.0 to 3.5 V, along with a capacity loss of only 25.5 % 

after 10,000 cycles, demonstrating excellent cycling performance. The CoNb2O6@G anode holds signi-

ficant potential applications in LICs with high energy, fast charging, and high stability. Furthermore, 

our findings offer valuable insights that will inform the design of next-generation high-performance 

energy storage devices. 
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