

Open Access : : ISSN 1847-9286

www.jESE-online.org

Review

Challenges and control strategies for disrupting passive oxide layer formation in electrochemical machining

Ritesh Kumar Upadhyay[™]

Department of Mechanical Engineering, BIT Mesra, Off Campus Deoghar – 814142, India

Corresponding author: [™]ritesh.upadhyay@bitmesra.ac.in

Received: May 12, 2025; Accepted: July 16, 2025; Published: July 21, 2025

Abstract

Electrochemical machining (ECM) is a non-traditional, precision machining process involving the removal of material through anodic dissolution. It is commonly utilized for machining complex geometries in conductive materials, especially in aerospace, biomedical, and automotive sectors. While having numerous benefits, ECM also has a major challenge: the development of a passive oxide layer on the surface of the workpiece. The formation of this layer depends on various factors, such as workpiece material, electrolyte composition, current density, and machining conditions. If not properly controlled, it can cause poor surface finish, dimensional errors, and increased energy consumption. To counter this problem, several control strategies have been devised that play a crucial role in breaking down the passive film. This review critically analyses and compares these strategies for inhibiting passive layer growth in ECM. It highlights both traditional and established techniques as well as novel developments like hybrid ECM methods, AI-driven process optimization, and real-time monitoring systems. The review aims to provide a material-specific and application-oriented perspective, highlighting the advantages, limitations, and technical viability of each strategy. By integrating findings from experimental studies, simulation work, and emerging technologies, this review provides a comprehensive resource for researchers and practitioners seeking to enhance the reliability, performance, and precision of ECM processes in high-tech manufacturing.

Keywords

Material removal; anodic dissolution; material passivation; process parameters; control measures

Introduction

Electrochemical machining (ECM) is a sophisticated and non-conventional machining process that utilizes electrolysis to remove material from electrically conductive workpieces immersed in electrolyte upon supply of DC current, as shown in Figure 1. In contrast to conventional techniques such as milling or drilling, which rely on direct mechanical contact between the tool and the workpiece, ECM does not involve physical contact [1]. This contactless machining significantly

reduces tool wear and enables the machining of complex shapes and subtle geometries that are difficult to achieve with conventional methods. Consequently, ECM has emerged as a method of choice in sectors where precision, surface finish and tool life are significant factors, such as aerospace, biomedical, automotive, and energy industries [2]. One notable disadvantage of ECM is the tendency for a passivation layer to form on the workpiece surface during the dissolution process [3]. The passive film thus formed is typically composed of metal oxides and hydroxides, resulting from electrochemical reactions in which the tool serves as the cathode, the workpiece as the anode, and the electrolyte. This layer acts as an ionic transport barrier, inhibiting the process of anodic dissolution during machining. This hinders not only the material removal rate (MRR) but also increases electrical resistance, leading to higher energy consumption and lower machining accuracy and surface finish [4]. The development and accumulation of this passive film are affected by several factors, including the type of material being machined, the composition and pH of the electrolyte, the current density, the temperature, and the machining time [5]. Materials such as stainless steel, titanium alloys, and nickel superalloys are especially prone to developing recalcitrant oxide layers due to their high corrosion resistance and tendency to passivate [6]. If not properly managed, the existence of this passive layer will negatively affect dimensional precision, lengthen machining time, and lead to inconsistencies in results [7]. To eliminate such problems, a proper understanding of the electrochemical mechanisms associated with oxide growth is crucial. Using optimized electrolytes, applying pulse power supplies, and using additional techniques like ultrasonic stirring are some ways of preventing or disturbing passive layer development. Controlling this effectively is necessary to maximize ECM performance, ensure process consistency, and provide the high accuracy demanded by modern manufacturing techniques.

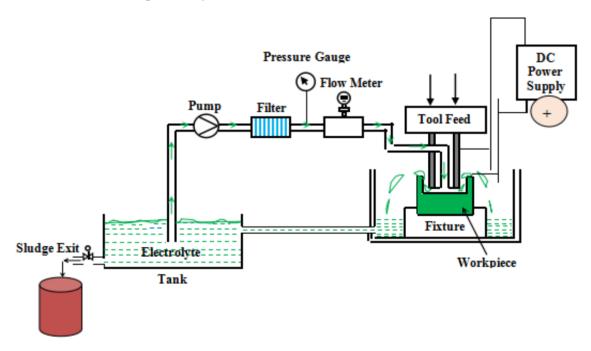


Figure 1. Electrochemical machining setup

Mechanisms of passive oxide layer formation in ECM

Oxide layer formation and its growth during ECM are significant issues, especially when machining materials with high oxygen affinity, such as stainless steels, titanium alloys, and nickel-based superalloys. These materials tend to form a stable oxide layer on their surface as a corrosion protection mechanism in aggressive environments [8]. Although this passivation is desirable in most

applications, it becomes undesirable in ECM. The formed oxide film acts as an insulating barrier at the electrode-electrolyte interface, inhibiting the anodic dissolution process that is critical for effective material removal [9]. As the passive layer grows thicker, it results in a decrease in the MRR, enhances the resistance of the electrochemical cell, and leads to greater energy consumption. Additionally, the uneven dissolution caused by the presence of a layer affects surface quality and dimensional accuracy. A stepwise flowchart illustrating the mechanism of passive layer formation and its buildup is shown in Figure 2.

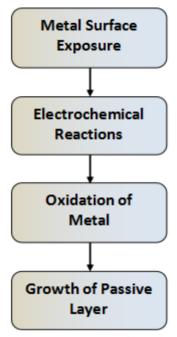


Figure 2. Process flowchart showing the stages of passive layer formation and buildup

Electrochemical reactions

At the core of ECM, electrochemical reactions govern material removal, involving an anode (the workpiece) and a cathode (the tool) submerged in an electrolyte. However, unwanted side reactions contribute to the formation of a passive oxide layer [10]. The fundamental material removal reaction is presented in Equation (1).

$$M \rightarrow M^{n+} + ne^{-} \tag{1}$$

where M is the metal, Mⁿ⁺ is the dissolved metal ion, and ne⁻ represents the number of electrons released. During anodic polarization, oxygen evolves from water oxidation as shown in Equation (2):

$$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$$
 (2)

Oxygen bubbles at the workpiece surface cause localized current density variations, resulting in non-uniform machining [11].

Formation of metal oxides and hydroxides (passive layer growth)

Dissolved metal ions react with oxygen or hydroxyl ions, forming oxide/hydroxide layers as presented in Equations (3) and (4) for iron-based alloys [12].

$$Fe^{2+} + 2OH^{-} \rightarrow Fe(OH)_2 \tag{3}$$

$$4Fe(OH)_2 + O_2 + 2H_2O \rightarrow 4Fe(OH)_3$$
 (4)

The Fe(OH)₃ further dehydrates to form Fe₂O₃ or Fe₃O₄, contributing to a stable oxide film that resists further dissolution.

Similarly, as presented in Equations (5) and (6), Ti^{4+} in titanium alloys reacts with water to form a stable TiO_2 layer, releasing H^+ ions, which indicates oxide film formation and local acidification. Ni^{2+} in nickel alloys reacts with hydroxide ions to form $Ni(OH)_2$, indicating the formation of a hydroxide layer.

$$Ti^{4+} + 2H_2O \rightarrow TiO_2 + 4H^+$$
 (5)

$$Ni^{2+} + 2OH^{-} \rightarrow Ni(OH)_2$$
 (6)

These oxide films hinder ECM efficiency. The mechanism of oxide layer formation during electrochemical dissolution of a metal workpiece is illustrated in Figure 3.

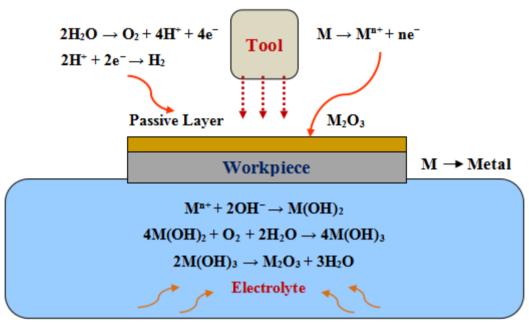


Figure 3. Oxide layer formation mechanism

Influence of workpiece material composition on passive layer formation

The composition of the workpiece material has a major influence on the properties and stability of the passive oxide layer. Various materials exhibit different levels of passivation due to variations in their electrochemical reactivity, oxide layer structure, and oxygen affinity, as well as the physical properties of the oxide films deposited on different metals [13]. For example, stainless steels, which are primarily iron-chromium alloys, exhibit high passivation through the formation of a stable chromium oxide (Cr2O3) coating, which is highly resistant to dissolution [14]. Additional alloying elements, such as molybdenum and nickel, further enhance corrosion resistance and passive layer stability, presenting additional challenges in ECM [15]. Titanium and its alloys form a highly stable titanium dioxide (TiO₂) layer, which is insulating and strongly adherent, significantly impeding anodic dissolution [16]. Likewise, nickel-based superalloys such as Inconel and Hastelloy form dense nickel oxide (NiO) and nickel hydroxide (Ni(OH)₂) layers that are difficult to remove because of strong metal-oxide bonding [17]. These alloys tend to require a suitable electrolytic environment with complexing agents, such as EDTA or citric acid, to facilitate oxide breakdown [18]. Aluminium alloys form a chemically resistant aluminium oxide (Al₂O₃) film, requiring fluoride-containing electrolytes for successful oxide dissolution [19]. However, materials like copper and low-carbon steels do not exhibit much passivation. Copper does not form a stable oxide film under normal ECM conditions, whereas low-carbon steels form a porous iron oxide layer that does not significantly impede the machining process [20,21].

Effect of electrolyte properties on passive film formation

The electrolyte plays a crucial role in ECM by affecting both passive oxide layer growth and material removal efficiency [22]. Its composition determines ion transport, reaction kinetics, and passive film behaviour during anodic dissolution. Electrolyte pH is a key factor: acidic solutions (pH < 7), such as HCl, H_2SO_4 , and HNO_3 , promote oxide breakdown via high H^+ concentrations, enhancing reactivity and dissolution [23]. However, strong acids may cause uncontrolled corrosion, limiting their use in precision applications. Neutral electrolytes (pH \approx 7) such as NaNO $_3$ and NaCl offer controlled dissolution with minimal side reactions, making them ideal for maintaining surface integrity [24]. Alkaline electrolytes (pH > 7), including NaOH and KOH, promote the formation of stable oxides//hydroxides, such as Al(OH) $_3$ and Fe $_2O_3$, which reduces removal efficiency and surface quality [25].

The conductivity of the electrolyte influences ionic mobility and current distribution [26]. High-conductivity electrolytes, such as NaCl, NaNO₃, and H₂SO₄, enable uniform charge transfer and efficient oxide disruption [27]. Low-conductivity solutions, such as distilled water, cause non-uniform current flow, passive layer buildup, and poor finishes [28].

Electrolyte flow rate is equally critical. High flow rates enhance mass transport and clear by-products from the interelectrode gap [29], reducing passive film formation and improving machining consistency. Low flow rates cause by-product accumulation, promoting passivation, uneven removal, and reduced accuracy [30].

Temperature also impacts ECM. Elevated temperatures increase oxide solubility and dissolution rates, benefiting passivation-prone metals [31]. However, excessive heat may degrade tooling, decompose the electrolyte, or trigger side reactions, compromising surface quality. Low temperatures hinder ion mobility and conductivity, reducing efficiency and raising energy consumption [32]. An optimal temperature range of 30 to 60 °C is crucial for maintaining a balance between dissolution, passive film disruption, and system stability.

In summary, achieving high-performance ECM requires careful control of electrolyte pH, conductivity, flow rate, and temperature to minimize passive layer formation and maximize material removal efficiency.

Role of process parameters on oxide layer development

In ECM, the formation and disruption of the passive oxide film are controlled by key machining parameters, including voltage, current density, interelectrode gap, flow rate, tool feed, machining time, and pulse characteristics. Applied voltage directly impacts the electric field between the tool and workpiece, thereby influencing anodic dissolution [33,34]. Low voltages fail to break passive films on metals like titanium, while excessive voltages enhance oxidation, stabilizing these films and reducing surface finish quality [35]. Thus, maintaining optimal voltage is essential for uniform oxide breakdown.

Current density influences MRR; moderate levels enhance it, while extremes cause localized heating or poor dissolution [36]. The inter-electrode gap affects both the electric field and debris flushing. Tight gaps improve dissolution but hinder flushing, promoting oxide accumulation; wider gaps lower field strength but improve debris removal [37]. Tool feed rate affects fresh surface exposure; inappropriate rates either overload the gap with by-products or limit dissolution time [38]. Electrolyte concentration also governs conductivity; higher concentrations improve MRR but may trigger side reactions or erosion [39].

Pulse parameters in pulsed ECM further influence performance. Short, controlled pulses help disrupt oxide layers and renew the electrolyte, whereas continuous DC can risk electrolyte degradation and permanent passivation [40].

Oxide formation naturally occurs during anodic reactions, creating a barrier that inhibits further dissolution [41]. Without regular disruption, this layer restricts electrolyte contact, reduces MRR, and destabilizes the process, especially under high voltage conditions, as illustrated in the graph shown in Figure 4. This can cause unstable machining conditions and variable removal rates, particularly at higher voltages where the oxide layer tends to grow more rapidly [42,43].

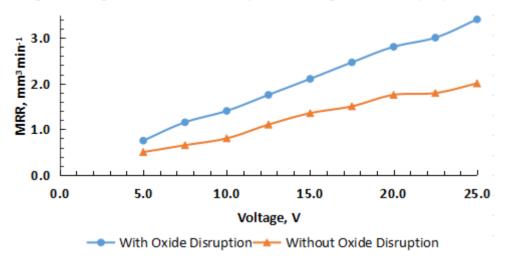


Figure 4. MRR in ECM with and without oxide disruption

In ECM, the lack of oxide disruption leads to the buildup of passive films, causing non-uniform material removal and surface defects such as pitting and increased roughness [44]. Thicker oxide areas resist dissolution, while thinner regions dissolve faster. Under steady DC conditions, uncontrolled oxide growth degrades surface finish. Conversely, disruption techniques such as pulsed current, ultrasonic agitation or tool vibration enable consistent passive layer breakdown, exposing fresh metal uniformly [45]. This results in smoother surfaces and stable dissolution fronts, minimizing over-etching and maintaining integrity [46]. Research shows that with oxide disruption; the surface roughness decreases consistently as voltage increases. Figure 5 illustrates this, comparing surface quality at different voltages with and without disruption, underscoring the importance of oxide control in optimizing ECM performance [47,48].

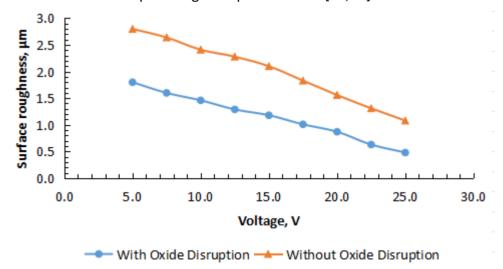


Figure 5. Surface roughness in ECM with and without oxide disruption

Given the persistent challenges of passive oxide layer formation in ECM, this review presents a focused and comparative analysis of control strategies specifically designed to address this issue.

Unlike broader reviews, it focuses on the mechanisms, impacts, and suppression methods of passive film formation across various materials and machining conditions. Five core strategies are examined: electrolyte modification, pulsed/reverse-pulsed ECM, hybrid techniques, process parameter optimization, and real-time adaptive control systems, including Al-based methods. Each is discussed from a material-specific standpoint with quantitative metrics such as MRR, surface roughness, and oxide thickness. Reported improvements include MRR increases up to 45 %, surface roughness reductions by 30 to 60 %, and oxide thickness decreases by several micrometres under optimized conditions [49,50]. The review also highlights the role of advanced computational tools and real-time monitoring technologies in enhancing accuracy and process reliability. This synthesis bridges experimental, simulation, and application-based research, offering a comprehensive reference for improving ECM's industrial viability.

Literature review on control strategies for passive oxide layer disruption

The literature provides insights into controlling passive oxide layers in ECM by understanding material electrochemistry and electrolyte chemistry. Although beneficial in its natural state, the oxide layer hinders anodic dissolution in ECM. Various strategies have been explored to weaken or eliminate it for uniform material removal [51]. A schematic illustrating the effects of these strategies on oxide formation is shown in Figure 6.

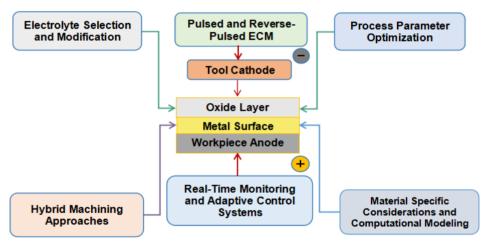


Figure 6. Control strategies impacting the passive oxide layer disruption

Electrolyte selection and modification

Electrolyte selection plays a pivotal role in ECM performance, impacting dissolution efficiency, surface finish, and compatibility with workpiece materials. Common choices include sodium chloride (NaCl) and sodium nitrate (NaNO₃), favoured for their conductivity and ability to interact with passive oxide films [52,53]. NaCl, rich in Cl⁻ ions, effectively disrupts oxide layers like Cr₂O₃ and TiO₂, making it suitable for stainless steel and titanium alloys by forming soluble metal-chloride complexes [54,55]. NaNO₃, being less aggressive, offers electrochemical stability and is better suited for moderately passivating materials, though it may require enhancement for more resistant substrates. Additives such as chelating agents or oxidizers are often introduced to improve passive film breakdown [56]. Moreover, inhibitors help to control electrochemical conditions and prevent unwanted side reactions, contributing to stable operation. Thus, tailoring electrolyte composition, including additives and inhibitors, is essential to balance aggressiveness, conductivity, and process control for optimal ECM results. This strategy is presented with a material-specific perspective, highlighting how different electrolytes interact with varying levels of material passivation. For

instance, NaCl proves highly effective for stainless steel and titanium alloys, while a mixed ethylene glycol NaCl electrolyte enhances surface integrity in Cu-based shape memory alloys. The performance is substantiated through quantitative measures such as MRR (0.323 mg min⁻¹), surface roughness (0.384 µm), and reduction in oxide thickness, which contributes to more stable and uniform anodic dissolution [57]. Studies have shown that optimized electrolytes can reduce oxide film thickness by several micrometres, improving machining consistency and dimensional accuracy [58]. Chelating agents such as ethylenediaminetetraacetic acid (EDTA), citric acid, and oxalic acid are widely used in ECM to form stable metal-ion complexes, facilitating oxide layer dissolution and improving surface finish and machining uniformity [59]. Surfactants enhance electrolyte wetting and lower surface tension, aiding in debris and oxide removal from the machining gap [60,61], which stabilizes current density and reduces localized heating. De-passivating ions like fluoride or chloride actively dissolve passive films, particularly on TiO₂ and Al₂O₃ surfaces, by forming soluble complexes [62]. Inhibitors are added to prevent localized corrosion and unwanted side reactions, maintaining electrolyte stability. Optimized additive combinations enhance material removal, precision, and surface quality. Maintaining stable pH is equally crucial, as anodic reactions and gas evolution cause local pH fluctuations [63,64]. Buffer systems such as phosphate, borate, or citrate regulate pH within the optimal range (6 to 8) [65], with phosphate buffers being especially effective. pH control is critical in micro-ECM and with highly passivating materials [66].

Pulsed and reverse-pulsed ECM

Pulsed and reverse-pulsed ECM are advanced methods developed to mitigate passive oxide film formation, which obstructs material removal during machining [67]. Continuous DC ECM promotes stable oxide growth, reducing efficiency and accuracy. Pulsed ECM improves performance by introducing on-time and off-time intervals, allowing electrolyte replenishment, heat dissipation, and oxide dissolution through localized effects [68]. This enhances anodic dissolution and ion transport in the machining gap. Reverse-pulsed ECM further improves results by momentarily reversing polarity, creating cathodic conditions that destabilize oxide layers like Cr_2O_3 and TiO_2 on stainless steel and titanium, respectively [69,70]. These techniques improve surface finish, MRR, and dimensional accuracy, especially in passivating or hard-to-machine materials [71].

Pulse duration and frequency are critical. Short pulses deliver intense current bursts that disrupt oxide films before they stabilize, enhancing MRR and avoiding persistent passivation seen in DC ECM [72,73]. In contrast, long pulses or insufficient off-time can lead to electrolyte depletion and oxide reformation, reducing performance [74]. Although low-frequency pulsing may increase MRR, it can also trigger passivation if not properly managed [75]. Therefore, optimizing pulse parameters is essential for achieving efficient and consistent ECM results across different materials. This strategy is evaluated from a material-specific perspective, particularly for difficult-to-machine and highly passivating materials, such as Inconel 625 and titanium alloys [76]. Quantitative improvements in process performance have been validated through measurable parameters, including an increase in MRR (up to 3.1587 mg min-1), a reduction in radial overcut (71.96 μ m), and an enhancement in surface finish. Although direct data on oxide thickness reduction is limited, the improved dissolution behaviour under optimized pulse conditions strongly indicates effective passive layer disruption. These results confirm the suitability of pulse control for precise and efficient ECM across a wide range of materials [77].

Process parameter optimization

Optimizing ECM parameters is essential for minimizing passive layer formation, enhancing MRR, and achieving high precision machining of complex, hard-to-machine materials. Applied voltage significantly influences electrochemical reaction rates; appropriate control prevents thermal instability and abnormal oxide growth, while fluctuations affect dimensional accuracy and surface finish [78]. The interelectrode gap plays a crucial role in electric field distribution and electrolyte flow. A balanced gap avoids arcing or voltage loss, maintaining uniform current and minimizing oxide buildup [79]. The electrolyte flow rate governs the removal of metal ions and by-products; a higher flow rate reduces passivation and maintains chemical stability [80]. Electrolyte concentration affects conductivity and dissolution kinetics, where optimal levels promote efficient ion transport without causing passivation or erosion. These parameter optimizations have demonstrated improved machining outcomes, higher MRR, better surface finish, and oxide disruption in materials like Inconel 625 and Nimonic-263. Electrolyte concentration and pulse frequency significantly affect surface roughness and roundness error, achieving minimum roughness and roundness error values. Findings of this study on micro-ECM of Inconel 625 underscore the vital role of optimized electrolyte conditions in enhancing surface quality during micro-machining of nickel-based superalloys [81]. The tool feed rate must be synchronized with the material removal rate. Too rapid feed rate will result in poor machining or tool-workpiece contact, while too low of a rate introduces passive layer buildup [82]. Simulation and experimental research on the micro ECM of Nimonic-263 superalloy showed that the process parameters, such as applied voltage, tool feed rate, and tool material, significantly affect MRR and surface roughness. The use of copper and SS304 electrodes with varying conductivity affected electrolyte characteristics and electric field distribution, validated through COMSOL simulations. These results show the significance of optimizing electrochemical conditions and toolelectrolyte interactions to improve surface integrity in precision machining [83].

Hybrid machining approaches

Hybrid machining methods have developed as an effective means to overcome the limitations of conventional ECM, particularly in terms of passive layer disturbance. Ultrasonic-assisted ECM (UA-ECM) introduces high-frequency mechanical vibrations into the electrolyte, enhancing turbulence and disrupting passive film formation. Experiments have proved that ultrasonic assistance improves material removal rates, particularly in challenging-to-machine alloys [84]. Laser-aided ECM (LA-ECM) is another novel hybrid method which utilizes local heating to stress the passive oxide layer before electrochemical dissolution [85]. This method was found to be highly effective for machining ceramics and other non-metallic conductive materials that are prone to rapid passivation. Studies have shown that the use of ECM with mechanical micro-abrasion or brushing, which involves motion-controlled motion, still enhances passive layer disruption, leading to more consistent material removal [86]. These findings emphasize how hybridization can optimize ECM performance based on the specific characteristics of the workpiece material.

Real-time monitoring and adaptive control systems

The complexity associated with the ECM process has necessitated the use of real-time monitoring systems to dynamically modify machining parameters and prevent passive layer effects. Electrochemical impedance spectroscopy (EIS) is the most widely utilized method for observing passive layer creation in real-time, with simultaneous corrective measures undertaken in real-time [87]. The use of AI and ML algorithms is also being investigated for predicting the response of the passive oxide layer and modifying the ECM settings to the optimal value. These advances have led to adaptive ECM

systems that automatically control electrolyte composition, pulse parameters, and machining conditions using real-time data [88]. Quantitative improvements in MRR, surface finish, and process stability have been reported where Al-driven adjustments dynamically respond to oxide layer formation. Real-time EIS feedback and sensor data help to regulate oxide thickness, ensuring consistent dissolution and enhanced machining precision. These advancements underline the potential of intelligent systems in tailoring ECM processes to specific material responses. On top of that, internet of things (IoT) enabled sensors to have also been integrated into ECM setups, transmitting process information to cloud-based systems for predictive maintenance and performance enhancement [89].

Material-dependent factors and computational modelling

The relationship between the electrolyte chemistry and workpiece material properties is vital to ECM performance. Different materials passivate at varying rates, so it is essential to design specialised electrolytes to ensure maximum machining efficiency. For instance, stainless steels and titanium alloys, which are commonly used in aerospace and biomedical fields, have a high tendency to form a passive layer due to their affinity with oxygen [90]. In such cases, certain electrolytes containing complexing agents or active de-passivators need to be employed to ensure uniform material dissolution. Advancements in computational simulation and modelling have provided deeper insight into the behaviour and control mechanisms of passive oxide layers. Finite element analysis (FEA), computational fluid dynamics (CFD), and multi-physics simulations have been extensively used to predict passive layer growth, ion transport dynamics, and electrolyte flow patterns in ECM [91,92]. These predictive models enable researchers to design the optimal process parameters and electrolyte composition before conducting actual experimental trials, thereby saving considerable time and expense in process development. The literature highlights several control strategies for controlling passive oxide layer formation in ECM, each with specific strengths and limitations based on material type, machining conditions, and precision requirements. Electrolyte modification is a cost-effective method for chemically controlling oxide stability, but it may require the addition of additives or high flow rates to passivate materials. Pulsed and reverse-pulsed ECM dynamically disrupt oxide layers and enhance thermal regulation, improving MRR and surface finish, especially effective for titanium and nickel alloys, though requiring careful pulse parameter tuning. Hybrid methods like ultrasonic- or laser-assisted ECM enable mechanical or thermal oxide breakdown and are effective for high-strength materials, but involve higher cost and complexity, limiting them to specialized sectors. Optimizing parameters such as voltage, gap, and flow rate provides scalable efficiency gains but demands process stability and testing. Adaptive systems with real-time monitoring offer precise oxide control via AI or sensors but are expensive. Combining these strategies can achieve superior ECM outcomes across applications.

Comparative analysis of control strategies

Comparison of MRR across control strategies in ECM

The comparative bar graph shown in Figure 7 demonstrates the MRR attained through various advanced control approaches in ECM [93-96]. Such approaches have been investigated extensively in earlier research to optimize machining performance, especially MRR, which continues to be an important measure of process efficiency.

Electrolyte composition significantly affects MRR in ECM by enhancing ion transport through optimized conductivity, viscosity, and chemical stability. Pulsed and reverse-pulsed ECM prevents passive film formation, improving MRR and dimensional accuracy.

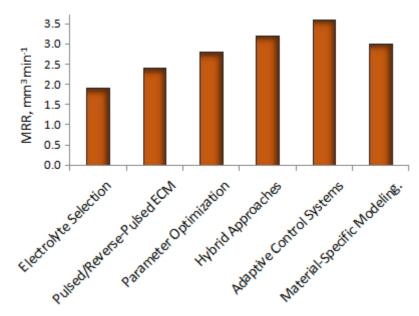


Figure 7. Comparison of MRR across control strategies in ECM

Optimized parameters, such as voltage, current density, interelectrode gap, and flow rate, further enhance dissolution while reducing stray corrosion. Hybrid ECM techniques, such as those utilising ultrasonic or laser assistance, enhance material removal.

Real-time monitoring with adaptive control dynamically adjusts parameters for consistent, high MRR. Material-specific strategies supported by computational modelling enable precision machining of complex alloys, prioritizing accuracy. These integrated approaches collectively aim to maximize ECM performance and machining efficiency.

Comparison of surface roughness and overcut across control strategies in ECM

The comparative bar graph illustrated in Figure 8 depicts the effect of different control strategies applied in ECM on two prime quality parameters: surface roughness and overcut [97-100].

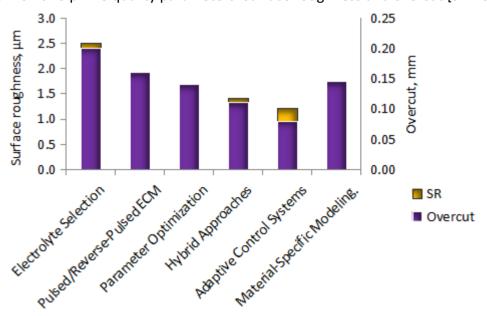


Figure 8. Comparison of surface finish and overcut across control strategies in ECM

Both parameters directly control the dimensional accuracy and surface integrity of machined parts and have been extensively explored to maximize ECM performance.

Electrolyte selection affects surface finish by improving ion dissolution and flushing, moderately enhancing quality and slightly reducing overcut. Pulsed and reverse-pulsed ECM significantly lowers surface roughness and overcut by minimizing heat and passive layer formation. Optimizing parameters like interelectrode gap, current density, and flow rate stabilizes the electrochemical zone and improves uniformity. Hybrid strategies, such as ultrasonic-assisted ECM, enhance circulation and material removal for better finishes. Real-time monitoring and adaptive control dynamically optimize conditions, achieving minimal overcut. Material-specific strategies with computational modelling further improve precision, emphasizing advanced control methods for high-accuracy ECM performance.

Effectiveness of various approaches for different materials

The effectiveness of control strategies in ECM depends on the electrochemical and physical properties of workpiece materials. As shown in Table 1, material-specific characteristics significantly influence strategy selection and performance [101-103].

Table 1. Comparison of ECM control strategies based on workpiece material characteristics

Control strategy	Stainless steel	Titanium alloys	Nickel-based	Aluminium/	Copper/	
			superalloys	/Magnesium	/low-carbon steel	
Electrolyte selection	High (with Cl ⁻	Moderate	Moderate	High (fluoride-	Sufficient	
		(requires	(needs	based	(standard	
& modification	additives)	aggressive	chelating	effective)	NaCl/NaNO₃	
		electrolytes)	agents)	enective	works well)	
Pulsed & reverse- pulsed ECM	Very effective in	Effective, but		Highly	Not essential, but	
	reducing oxide	oxide breakdown	Moderate	effective	improves surface	
	regrowth	is challenging		enective	finish	
Process parameter optimization	Improves	Limited by	Requires tight		Highly effective	
	efficiency &	passive film	control	Very effective		
	MRR	resilience	CONTROL			
Hybrid machining	Effective for		Highly	Moderate	Rarely needed	
(ECM ultrasonics/	intricate	Highly effective	Highly effective			
/laser/mechanical)	features		enective			
Dool time monitoring	Excellent for	Crucial due to	Essential for	Useful for micro-ECM	Optional	
Real-time monitoring	precision	variable oxide				
& adaptive control	machining	stability	consistency	IIIICI O-ECIVI		
Material specific considerations	Requires de-	Demands	Needs	Fluoride	Minimal concern	
	passivation	aggressive	complexing	essential		
	agents	conditions	electrolytes	essential		
Computational	Predicts oxide	Helps optimize electrolytes	Useful in ele-	Beneficial for film evolution	Simple modelling	
modelling	dynamics well		ctrolyte-agent		sufficient	
	dynamics well	electionytes	interaction	iiiii evolution	Sufficient	

Stainless steel and aluminium/magnesium alloys rapidly form passive films, requiring chloride or fluoride-based electrolytes to destabilize oxides and maintain conductivity. Titanium and nickel-based superalloys form highly stable oxides, which require aggressive electrolytes, such as chelating agents or advanced methods like pulsed/reverse-pulsed ECM, to periodically disrupt passive layers and improve removal without thermal damage. Hybrid machining methods enhance oxide disruption via localized energy or mechanical stirring, benefiting hard-to-machine, chemically stable alloys with low dissolution rates. Real-time and adaptive control systems address process instabilities in reactive alloys by dynamically adjusting parameters to maintain optimal conditions. Computational modelling aids in predicting oxide behaviour, electrolyte interaction, and material

response, supporting efficient control algorithm development and virtual optimization for complex, passivation-sensitive alloys. Thus, ECM control strategies remain highly material dependent.

Cost-benefit analysis of implementing control measures

Control strategies in ECM must be evaluated for both technical effectiveness and economic viability. Table 2 outlines cost-benefit trade-offs involving investment, operational expenses, and efficiency gains [104-106]. Electrolyte selection/modification involves low-to-medium initial costs and moderate operating expenses, offering cost-effective performance in most applications. Pulsed and reverse-pulsed ECM techniques incur moderate equipment/control costs but provide high precision and oxide breakdown efficiency, justifying use in aerospace and medical sectors. Process parameter optimization, like voltage, temperature, and electrolyte flow, offers high ROI due to low cost and simplicity, with moderate performance gains, making it ideal for standard setups. Hybrid techniques (e.g. ECM with ultrasonic/laser assistance) yield high efficiency for hard-to-machine or valuable materials but are reserved for niche, high-cost applications. Real-time monitoring and adaptive systems demand high initial investment yet enhance precision and consistency in automated or high-precision environments. Computational modelling, despite moderate setup costs, provides long-term R&D benefits by enabling process design and minimizing experimental iterations.

Table 2. Cost justifications and efficiency gains of advanced control measures in electrochemical machining

Control strategy	Initial investment	Operational cost	Efficiency gain	Cost justification
Electrolyte selection &	Low to medium	Medium	Moderate to	Cost-effective for most
modification	Low to incurain		high	applications
Pulsed & reverse-pulsed	Medium	Medium	Lligh	Justified in aerospace,
ECM	Medium	Medium	High	medical sectors
Process parameter	Low	Low	Moderate	High ROI due to simplicity
optimization	LOW	LOW	Moderate	
Hybrid machining				Justified only in high-va-
(ECM ultrasonics/	Low	High	Very high	, ,
/laser/mechanical)				lue or complex materials
Dool time menitoring 9	High	Medium to high	High	Best suited for high
Real-time monitoring &				precision or automated
adaptive control				environments
Computational	Medium	Low (simulation	Indirect (design	Long-term benefit,
modelling	iviedium	cost)	optimization)	especially in R&D setups

Industry-specific adoption and practical feasibility

The effectiveness of ECM control strategies differs by industry due to variations in materials, precision, production volume, and cost constraints. Table 3 summarizes industry-specific priorities [107,108]. Aerospace requires high accuracy for heat-resistant alloys, employing pulsed ECM, hybrid techniques, adaptive control, and simulation to achieve dimensional precision and manage oxide layers. Automotive sectors focus on cost effectiveness, preferring optimized electrolytes and tenable parameters for efficient, economical machining. Biomedical fields need precise, contamination-free machining; hence, pulsed ECM, reactive electrolytes, and real-time monitoring are favoured for implants and tools. Defence applications adopt hybrid ECM and Al-driven optimization to meet diverse machining demands with moderate-to-high feasibility. The tool and die industries typically use basic ECM setups with minimal control strategies, due to the simpler shapes and cost considerations. For electronics and MEMS, micro-ECM with tight control and modelling ensures the production of intricate, miniaturized components, supporting both precision and high repeatability.

Industry Preferred control strategies Feasibility Pulsed ECM, hybrid machining, adaptive High (due to need for precision Aerospace control, computational modelling and hard-to-machine materials) Electrolyte selection, parameter High (focus on cost-efficiency and Automotive optimization throughput) Pulsed ECM, real-time monitoring, High (tight tolerances, **Biomedical** biocompatible materials) aggressive electrolytes Hybrid ECM, real-time systems, AI based Moderate to high (for advanced Defence optimization materials) Tool & die Standard ECM with optimized parameters High (low complexity, costmanufacturing and electrolyte choice sensitive applications) Micro ECM with precise parameter control High (for feature miniaturization Electronics/MEMS and computational modelling and repeatability)

Table 3. Industry-wise preferred control strategies and feasibility

The comparative analysis shows that while electrolyte modification, pulse control, hybridization, optimization, and monitoring offer distinct benefits, their effectiveness depends on materials and conditions [109,110]. No single method suffices; instead, tailored combinations enable optimal ECM performance and guide future research, as detailed in the concluding section.

Research progresses on control strategies for disrupting passive oxide layer formation

ECM has made significant advancements over the past few years, with the need to machine hard-to-cut and intricate materials more accurately and efficiently. Among the major problems in ECM, one of the long-standing issues is the formation of passive oxide films on workpiece surfaces, which restricts anodic dissolution and reduces machining performance. Current research has focused on developing new methods and technologies to defeat this challenge and improve ECM efficiency.

Novel electrolyte compositions for enhanced ECM performance

Advancements in ECM focus on developing novel electrolytes to enhance efficiency and surface finish, particularly for high-passivation materials. Standard electrolytes, such as NaNO₃ and NaCl, offer conductivity but struggle to dissolve stable oxide layers [111]. Reducing agents are added to break down or prevent passive film formation, enabling continuous anodic dissolution [112]. Some of the most used are gold nanoparticles (AuNPs), which are particularly useful in improving the electrochemical machining characteristics of 20MnCr5 steel alloy [113]. Copper ions (Cu²⁺ ions) facilitate the lowvalence dissolution of metal atoms in iron-based alloys and prevent the accumulation of dissolution by-products, such as metal hydroxides and gas bubbles, near the tool cathode [114]. Besides these reducing agents, chelating agents such as EDTA, citric acid, and oxalic acid have been proven useful [115,116]. They become bound to the metal ions through the development of soluble complexes that compromise the integrity of passive layers; therefore, they are especially suitable for difficult materials such as nickel-based superalloys and copper alloys, where passivation greatly hinders ECM efficiency. Oxidizing agents such as potassium dichromate (K₂Cr₂O₇) and hydrogen peroxide (H₂O₂) are also utilized in ECM environments where the degradation rate of oxides needs to be achieved quickly. These agents enhance the dissolution of metal oxides by adding more oxidative capacity, increasing the rate of reaction and supporting a more vigorous attack on the passive film [117,118].

Computational modelling and simulation of oxide layer behaviour

Computational modelling and simulation are essential for understanding oxide layer formation and growth during ECM, especially for passivating materials. Traditional trial-and-error approaches

are costly and time-consuming, prompting the use of numerical methods, such as finite element analysis (FEA), computational fluid dynamics (CFD), and multiphysics tools like ANSYS Fluent and COMSOL Multiphysics [119-121]. These tools simulate key phenomena, including ion transport, electric field distribution, current density, temperature gradients, and passive film behaviour. For instance, models help visualize oxide layer development and dissolution based on pulse regimes, electrolyte flow, and electrode geometries. This virtual analysis enables researchers to anticipate material response, fine-tune process parameters, and optimize ECM systems tailored to specific materials and geometries. Moreover, simulations significantly reduce the need for full-scale experimentation, saving time and cost while improving process reliability. Overall, computational modelling makes ECM more predictive, controllable, and adaptable, particularly for high-precision, performance-critical applications.

Machine learning and Al-based optimization for ECM control

Machine learning (ML) and artificial intelligence (AI) are transforming ECM by enabling real-time, data-driven process control. ECM involves complex, nonlinear interactions among parameters like voltage, current density, electrolyte chemistry, temperature, and flow rate, all affecting MRR, surface finish, and oxide behaviour. ML algorithms, neural networks, genetic algorithms, and reinforcement learning analyse extensive data to uncover patterns beyond traditional methods [122]. These models predict outcomes and support dynamic parameter control. Al-driven ECM systems self-optimize to reduce passive oxide growth or enhance surface quality. Multi-objective optimization enables simultaneous improvement in MRR, tool wear, energy efficiency, and dimensional accuracy. This intelligent control minimizes trial-and-error testing, shortens development time, cuts costs, and improves flexibility, especially useful when machining challenging or novel materials [123].

Experimental studies on new materials and coatings

With the rising demand for lightweight, high-strength, and corrosion-resistant materials in the aerospace, biomedical, and defence sectors, ECM research is increasingly focusing on advanced materials and coatings. Alloys like titanium aluminides, cobalt-chromium, and ceramic matrix composites exhibit strong passivation, forming stable oxide layers that hinder ECM [124]. To address this, researchers explore surface modifications that improve electrochemical machinability. Conductive polymer films and catalytic surface layers alter electrochemical responses; reduce oxide formation, and lower interfacial resistance. Additionally, nanostructured and thin conductive coatings enhance electrical conductivity and ensure uniform current distribution, enabling more controlled material removal [125]. These innovations enhance the understanding of material electrolyte interactions and facilitate the precise engineering of complex geometries, thereby advancing their application in next-generation high-performance materials.

Conclusion

Passive oxide layer formation remains a major challenge in ECM, significantly reducing efficiency, accuracy, and material removal rates, especially in hard-to-machine, corrosion-resistant materials. This review synthesized passive film formation mechanisms and analysed control strategies including electrolyte modification, pulse current application, hybrid ECM, process optimization, and real-time monitoring. A key finding is the material and condition-dependent nature of oxide disruption. Pulsed/reverse-pulsed ECM improves surface finish and limits oxide buildup but is sensitive to pulse parameters and material properties. Electrolyte modifications with de-passivating or complexing agents enhance dissolution but raise environmental concerns due to the formation of toxic

byproducts. Hybrid methods (ultrasonic, mechanical, thermal) improve oxide stripping and machining stability but face complexity, energy, and cost barriers. Real-time adaptive control with AI and sensors offers precision but is underused due to integration challenges.

Research gaps persist: ECM still relies on trial-and-error and oversimplified models, failing to capture the dynamics of passive films. Environmental sustainability is a concern, as aggressive electrolytes like sodium nitrate or chlorate produce hazardous waste. The lack of integrated, smart ECM platforms limits adaptability and industrial scalability.

Future research should focus on sustainable electrolytes, ionic liquids, deep eutectic solvents, and biodegradable organics with full electrochemical and lifecycle evaluations. Advancing real-time monitoring (electrochemical impedance spectroscopy, acoustic emission) combined with machine learning can enable dynamic passivation control, but requires better sensor integration and noise-resistant algorithms. Multi-physics simulations that integrate electrochemical kinetics, heat transfer, fluid flow, and oxide growth will enhance predictive ECM design. Phase-field modelling and Al-augmented simulations, paired with experimental validation, will enhance understanding of oxide evolution. Hybrid ECM combining ultrasonic, laser, or plasma assistance offers promise but demands thorough process and cost analyses.

Overall, disrupting passive oxide layers in ECM requires a multifaceted approach that combines sustainable practices, smart control, and advanced process design. Interdisciplinary collaboration across electrochemistry, materials science, engineering, and AI is essential to advance ECM's accuracy, versatility, and eco-friendliness for future manufacturing applications.

Acknowledgement: I sincerely thank the libraries of BIT Mesra, Ranchi, and its Deoghar Off-Campus for providing access to a wide range of journals and academic resources. Their support was instrumental in facilitating comprehensive literature reviews and enriching the research process. The availability of these scholarly materials significantly contributed to the depth and quality of my study.

Declaration of conflicting interests: The author declared no potential conflicts of interest with respect to the publication of this article.

Funding: The author received no financial support for the research and publication of this article.

References

- [1] S. A. Silkin, E. A. Pasinkovskii, V. I. Petrenko, A. I. Dikusar, High rate anodic dissolution in chloride solutions of steel after electrothermochemical treatment, *Surface Engineering and Applied Electrochemistry* **44(5)** (2008) 343–352. https://doi: 10.3103/S1068375508050013
- [2] L. Jakob, D. Friedemann, E. Nezam, B. Buschke, I. Krossing, J. Bartsch, In-situ evidence for the existence of surface films in electrochemical machining of copper in nitrate electrolytes, *Electrochimica Acta* 493 (2024) 144391. https://doi.org/10.1016/j.electacta.2024.144391
- [3] D. Zander, A. Schupp, O. Beyss, B. Bob Rommes, A. Klink, Oxide Formation during Transpassive Material Removal of Martensitic 42CrMo4 Steel by Electrochemical Machining, *Materials* **14(2)** (2021) 402. https://doi.org/10.3390/ma14020402
- [4] Y. Liu, N. Qu, Experimental and numerical investigations of reducing stray corrosion and improving surface smooth in macro electrolyte jet machining titanium alloys, *Journal of The Electrochemical Society* **167(8)** (2020) 083502. http://dx.doi.org/10.1149/1945-7111/ab88ba
- [5] R.K. Upadhyay, A. Kumar, P.K. Srivastava, Experimental investigations of catalytic effect of Cu²⁺ during anodic dissolution of iron in NaCl electrolyte. *Proceedings of the Institution of*

- *Mechanical Engineers B* **231(13)** (2017) 2408-2415. https://doi.org/10.1177/0954405416629865
- [6] M. Tak, R. G. Mote, R. G. Anodic dissolution behavior of passive layer during hybrid electrochemical micromachining of Ti6Al4V in NaNO₃ solution, *Journal of Micro-and Nano-Manufacturing* **9(4)** (2021) 041001. https://doi.org/10.1115/1.4052327
- [7] T. Haisch, E. Mittemeijer, J. W. Schultze, Electrochemical machining of the steel 100Cr6 in aqueous NaCl and NaNO₃ solutions: microstructure of surface films formed by carbides, *Electrochimica Acta* 47(1-2) (2001) 235-241. https://doi.org/10.1016/S0013-4686(01)00561-8
- [8] L. Ying, Z. Yongbin, Z. Rudong, L. Yanliang, Electrochemical dissolution behavior and characterisation of passivation films of PH13-8Mo in NaNO₃, *Journal of Electroanalytical Chemistry* **981** (2025) 119004. https://doi.org/10.1016/j.jelechem.2025.119004
- [9] M.M. Lohrengel, K.P. Rataj, T. Münninghoff, Electrochemical machining—mechanisms of anodic dissolution, *Electrochimica Acta* 201 (2016) 348-353. http://dx.doi.org/10.1016/j.electacta.2015.12.219
- [10] P.B. Tailor, A. Agrawal, S.S. Joshi, Numerical modeling of passive layer formation and stabilization in electrochemical polishing process, *Journal of Manufacturing Processes* **18** (2015) 107-116. https://doi.org/10.1016/j.jmapro.2015.02.001
- [11] J. Mitchell-Smith, A.T. Clare, Electrochemical jet machining of titanium: overcoming passivation layers with ultrasonic assistance, *Procedia CIRP* **42** (2016) 379-383. https://doi.org/10.1016/j.procir.2016.02.215
- [12] F. Klocke, S. Harst, L. Ehle, M. Zeis, A. Klink, Surface integrity in electrochemical machining processes: An analysis on material modifications occurring during electrochemical machining, *Proceedings of the Institution of Mechanical Engineers B* **232(4)** (2018) 578-585. https://doi.org/10.1177/0954405417703422
- [13] J. Liu, X. Adayi, Effect of mechanical action and passive film on electrochemical mechanical finishing, *The International Journal of Advanced Manufacturing Technology* **112** (2021) 1787-1795. https://doi.org/10.1007/s00170-020-06510-4
- [14] J. Wang, Y. Wang, X. Shi, P. Ouyang, Z. Zhang, H. Zhu, H, Y. Liu, Anodic dissolution behavior and microstructure preparation of nickel based superalloy in cryogenic-shielded and laser-assisted electrochemical machining, *Journal of Materials Processing Technology* **338** (2025) 118777. http://dx.doi.org/10.1016/j.jmatprotec.2025.118777
- [15] H. Yurtkuran, An evaluation on machinability characteristics of titanium and nickel based superalloys used in aerospace industry, *İmalat Teknolojileri ve Uygulamaları* **2(2)** (2021) 10-29. http://dx.doi.org/10.52795/mateca.940261
- [16] J. Wang, S. Yang, J. Zhang, Z. Zhang, W. Xue, H. Zhu, Y. Liu, Corrosion Properties and Passive Film Interface of Inconel 718 in NaNO₃ Solution for Laser-Assisted Electrochemical Machining, *Langmuir* **40(28)** (2024) 14384-14398. https://doi.org/10.1021/acs.langmuir.4c00993
- [17] Y. Yin, J. Zhang, Y. Ma, J. Huo, K. Zhao, X. Meng, J. Yin, Electrochemical dissolution behavior of nickel-based Hastelloy X superalloy at low current densities, *IEEE Access* **8** (2020) 62714-62724. http://dx.doi.org/10.1109/ACCESS.2020.2983591
- [18] H. Chen, L. Shi, Z.Y. Wang, S.Q. Yu, Electrochemical micro machining of stainless steel in EDTA complex electrolyte, *Applied Mechanics and Materials* **446** (2014) 214-218. https://doi.org/10.4028/www.scientific.net/AMM.446-447.214
- [19] Z. Zhang, R. S. B. Dandu, E. E. Klu, W. Cai, A review on tribocorrosion behavior of aluminum alloys: From fundamental mechanisms to alloy design strategies, *Corrosion and Materials Degradation* **4(4)** (2023) 594-622. https://doi.org/10.3390/cmd4040031

- [20] Y. Wang, P. Z. Zhang, H.Y. Wu, X.F. Wei, Q. Bi, J. Song, Microstructure and electrochemical properties of plasma tantalumising on low carbon steel, *Surface Engineering* **31(8)** (2015) 634-640. https://doi.org/10.1179/1743294414Y.0000000374
- [21] S. Zhang, J. Liu, X. Lin, Y. Huang, M. Wang, Y. Zhang, W. Huang, Effect of electrolyte solutions on the electrochemical dissolution behavior of additively manufactured Hastelloy X superalloy via laser solid forming, *Journal of Alloys and Compounds* **878** (2021) 160395. https://doi.org/10.1016/j.jallcom.2021.160395
- [22] A. Thakur, M. Tak, R. G. Mote, Electrochemical micromachining behavior on 17-4 PH stainless steel using different electrolytes, *Procedia Manufacturing* **34** (2019) 355-361. http://dx.doi.org/10.1016/j.promfg.2019.06.177
- [23] S. S. Anasane, B. Bhattacharyya, Experimental investigation on suitability of electrolytes for electrochemical micromachining of titanium, *The International Journal of Advanced Manufacturing Technology* **86** (2016) 2147-2160. https://doi.org/10.1007/s00170-015-8309-2
- [24] M. Datta, D. Landolt, On the influence of electrolyte concentration, pH and temperature on surface brightening of nickel under ECM conditions, *Journal of Applied Electrochemistry* **7** (1977) 247-252. https://doi.org/10.1007/BF00618992
- [25] S. S. Shinde, N. K. Wagh, S. H. Kim, J. H. Lee, Li, Na, K, Mg, Zn, Al, and Ca Anode Interface Chemistries Developed by Solid-State Electrolytes, *Advanced Science* **10(32)** (2023) 2304235. https://doi.org/10.1002/advs.202304235
- [26] X. Fang, N. Qu, Y. Zhang, Z. Xu, D. Zhu, Effects of pulsating electrolyte flow in electrochemical machining, *Journal of Materials Processing Technology* **214(1)** (2014) 36-43. http://dx.doi.org/10.1016/j.jmatprotec.2013.07.012
- [27] M. Datta, D. Landolt, On the role of mass transport in high rate dissolution of iron and nickel in ECM electrolytes—II, Chlorate and nitrate solutions, *Electrochimica Acta* **25(10)** (1980) 1263-1271. https://doi.org/10.1016/0013-4686
- [28] M. A. Rabbo, P. J. Boden, Development of Electrolytes for the Electrochemical Machining of Titanium I. Electrochemistry in static solutions, *British Corrosion Journal* 14(4) (1979) 240-245. https://doi.org/10.1179/000705979798358526
- [29] C. Rosenkranz, M. M Lohrengel, J. W. Schultze, The surface structure during pulsed ECM of iron in NaNO₃, *Electrochimica Acta* 50(10) (2005) 2009-2016. https://doi.org/10.1016/j.electacta.2004.09.010
- [30] E. V Likrizon, S. A. Silkin, A. I. Dikusar, Effect of Passive Oxide Film Structure and Surface Temperature on the Rate of Anodic Dissolution of Chromium-Nickel and Titanium Alloys in Electrolytes for Electrochemical Machining: Part 2. Anodic Dissolution of Titanium Alloys in Nitrate and Chloride Solutions, *Surface Engineering and Applied Electrochemistry* **59(3)** (2023) 255-263. http://dx.doi.org/10.52577/eom.2022.58.3.01
- [31] X. Chen, Z. Xu, D. Zhu, Z. Fang, D. Zhu, Experimental research on electrochemical machining of titanium alloy Ti60 for a blisk, *Chinese Journal of Aeronautics* **29(1)** (2016) 274-282. http://dx.doi.org/10.1016/j.cja.2015.09.010
- [32] R. K Pandey, P. Senthil, L. Boriwal, A. Malviya, Experimental investigation on influence of ECM process parameters on responses using full factorial design, *Materials Today: Proceedings* **4(2)** (2017) 3666-3671. https://doi.org/10.1016/j.matpr.2017.02.260
- [33] B. Bhattacharyya, J. Munda, Experimental investigation on the influence of electrochemical machining parameters on machining rate and accuracy in micromachining domain, International Journal of Machine Tools and Manufacture **43(13)** (2003) 1301-1310. https://doi.org/10.1016/S0890-6955(03)00161-5

- [34] O. Weber, M. Weinmann, H. Natter, D. Bähre, Electrochemical dissolution of cast iron in NaNO₃ electrolyte, *Journal of Applied Electrochemistry* **45** (2015) 591-609. http://dx.doi.org/10.1007/s10800-015-0809-0
- [35] R.V Rao, P.J. Pawar, R. Shankar, Multi-objective optimization of electrochemical machining process parameters using a particle swarm optimization algorithm, *Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture* **222(8)** (2008) 949-958. https://doi.org/10.1243/09544054JEM1158
- [36] A. K. Swain, M. M. Sundaram, K. P. Rajurkar, Use of coated microtools in advanced manufacturing: An exploratory study in electrochemical machining (ECM) context, *Journal of Manufacturing Processes* **14(2)** (2012) 150-159. https://doi.org/10.1016/j.jmapro.2011.11.005
- [37] M. M. Lohrengel, I. Klüppel, C. Rosenkranz, H. Bettermann, J. W. Schultze, Microscopic investigations of electrochemical machining of Fe in NaNO₃. *Electrochimica Acta* **48(20-22)** (2003) 3203-3211. http://dx.doi.org/10.1016/S0013-4686(03)00372-4
- [38] V. M. Volgin, V. V. Lyubimov, T. B. Kabanova, A. D. Davydov, Theoretical analysis of micro/nano electrochemical machining with ultra-short voltage pulses, *Electrochimica Acta* **369** (2021) 137666. https://doi.org/10.1016/j.electacta.2020.137666
- [39] X. Ma, X. Hu, S. Fan, H. Li, Electrochemical dissolution behavior of passive films of titanium matrix composites in NaCl solution, *The International Journal of Advanced Manufacturing Technology* **129(9)** (2023) 3813-3828. https://doi.org/10.1007/s00170-023-12463-1
- [40] Y. Yin, H. Li, S. Pan, J. Zhang, Q. Han, S. Yang, Electrochemical behaviour of passivation film formed on SLM-fabricated Hastelloy X superalloy surface in 10 wt% NaNO₃ solution, *Corrosion Science* **206** (2022) 110494. https://doi.org/10.1016/j.corsci.2022.110494
- [41] Y. He, J. Zhao, H. Xiao, W. Lu, W. Gan, F. Yin, Z. Yang, Electrochemical machining of titanium alloy based on NaCl electrolyte solution, *International Journal of Electrochemical Science* **13(6)** (2018) 5736-5747. https://doi.org/10.20964/2018.06.31
- [42] G. Liu, Z. Gong, Y. Yang, J. Shi, Y. Liu, X. Dou, C. Li, Electrochemical dissolution behavior of stainless steels with different metallographic phases and its effects on micro electrochemical machining performance, *Electrochemistry Communications* **160** (2024) 107677. https://doi.org/10.1016/j.elecom.2024.107677
- [43] Y. Wang, Z. Xu, A. Zhang, Electrochemical dissolution behavior of Ti-45Al-2Mn-2Nb+ 0.8 vol% TiB2 XD alloy in NaCl and NaNO₃ solutions, *Corrosion Science* **157** (2019) 357-369. https://doi.org/10.1016/j.corsci.2019.06.010
- [44] G. Singh, H. Kumar, A. Kumar, Variations in Surface Roughness and Material Removal by using Chemical/Chemically Assisted/Hybrid Machining Processes A *Review, Indian Journal of Science and Technology* **11** (2018) 28. https://dx.doi.org/10.17485/ijst/2018/v11i28/130785
- [45] E. Nam, C. Y. Lee, J. Min, S. J. Lee, B. K. Min, Effect of electrochemical conditions on material removal rate in electrochemical oxidation assisted machining. *Journal of The Electrochemical Society*, **164(2)** (2017) E23. https://doi.org/10.1149/2.0061704jes
- [46] P. Rodriguez, D. Hidalgo, J. E. Labarga, Optimization of pulsed electrochemical micromachining in stainless steel, *Procedia CIRP* **68** (2018) 426-431. https://doi.org/10.1016/j.procir.2017.12.090
- [47] W. Cao, D. Wang, D. Zhu, D. Improvement of surface quality for titanium alloys during counter-rotating electrochemical machining using an auxiliary cathode, *Journal of The Electrochemical Society* **169(12)** (2022) 123506. http://dx.doi.org/10.1149/1945-7111/acad2f
- [48] A. I. Dikusar, E. V. Likrizon, Effect of the Structure of Passive Oxide Films and Surface Temperature on the Rate of Anodic Dissolution of Chromium–Nickel and Titanium Alloys in Electrolytes for Electrochemical Machining: Part 1. Anodic Dissolution of Chromium–Nickel Steel in a Nitrate Solution, *Surface Engineering and Applied Electrochemistry* **59(2)** (2023) 107-115. http://dx.doi.org/10.3103/S1068375523020047

- [49] Y. Wang, N. Qu, Effect of breakdown behavior of passive films on the electrochemical jet milling of titanium alloy TC4 in sodium nitrate solution, *International Journal of Electrochemical Science* **14(2)** (2019) 1116-1131. https://doi.org/10.20964/2019.02.05
- [50] Z. Feng, E. Granda, W. Hung, Experimental investigation of vibration-assisted pulsed electrochemical machining, *Procedia Manufacturing* 5 (2016) 798-814. http://dx.doi.org/10.1016/j.promfg.2016.08.065
- [51] V. K. Jain, A. K. Chouksey, A comprehensive analysis of three-phase electrolyte conductivity during electrochemical macromachining/micromachining, *Proceedings of the Institution of Mechanical Engineers B* **232(14)** (2018) 2449-2461. https://doi.org/10.1177/0954405417690558
- [52] M. Datta, Anodic dissolution of metals at high rates, *IBM Journal of Research and Development* **37(2)** (1993) 207-226. https://doi.org/10.1147/rd.372.0207
- [53] J. P. Hoare, M. A. LaBoda, M. L. McMillan, A. J. Wallace, An Investigation of the differences between NaCl and NaClO₃ as electrolytes in electrochemical machining, *Journal of The Electrochemical Society* **116(2)** (1969) 199. http://dx.doi.org/10.1149/1.2411795
- [54] F. Shen, Y, Zhu, X, Li, R, Luo, Q. Tu, J. Wang, N. Huang, Vascular cell responses to ECM produced by smooth muscle cells on TiO₂ nanotubes, *Applied Surface Science* **349** (2015) 589-598. https://doi.org/10.1016/j.apsusc.2015.05.042
- [55] L. An, D. Wang, D. Zhu, Improvement on surface quality of 316L stainless steel fabricated by laser powder bed fusion via electrochemical polishing in NaNO₃ solution, *Journal of Manufacturing Processes* **83** (2022) 325-338. https://doi.org/10.1016/j.jmapro.2022.09.005
- [56] Y. Dai, Q. Li, H. Gao, L.Q. Li, F.N. Chen, F. Luo, S.Y. Zhang, Effects of five additives on electrochemical corrosion behaviours of AZ91D magnesium alloy in sodium chloride solution, *Surface Engineering* **27(7)** (2011) 536-543. https://doi.org/10.1051/e3sconf/202339101168
- [57] R. Mishra, R. P. Singh, R. K. Garg, Investigation into micro slotting of Cu-based shape memory alloy via μ-ECM using ethylene glycol mixed aqueous NaCl electrolyte, *Canadian Metallurgical Quarterly* **64(3)** (2024) 1063-1077. https://doi.org/10.1080/00084433.2024.2419224
- [58] D. Gelman, I. Lasman, S. Elfimchev, D. Starosvetsky, Y. Ein-Eli, Aluminum corrosion mitigation in alkaline electrolytes containing hybrid inorganic/organic inhibitor system for power sources applications, *Journal of Power Sources* 285 (2015) 100-108. https://doi.org/10.1016/j.jpowsour.2015.03.048
- [59] N. Vangapally, S. A. Gaffoor, S. K. Martha, Na₂EDTA chelating agent as an electrolyte additive for high performance lead-acid batteries, *Electrochimica Acta* **258** (2017) 1493-1501. https://doi.org/10.1016/j.electacta.2017.12.028
- [60] G. Yang, B. Wang, K. Tawfiq, H. Wei, S. Zhou, G. Chen, Electropolishing of surfaces: theory and applications, *Surface Engineering* **33(2)** (2017) 149-166. http://dx.doi.org/10.1080/02670844.2016.1198452
- [61] G. Cercal, G. de Alvarenga, M. Vidotti, Sludge Reduction and Surface Investigation in Electrochemical Machining by Complexing and Reducing Agents, *Processes* **11(7)** (2023) 2186. https://doi.org/10.3390/pr11072186
- [62] N. N. Zurita-Mendez, G. Carbajal-De la Torre, M. Estevez, L. Ballesteros-Almanza, E. Cadenas, M.A. Espinosa-Medina, Evaluation of the electrochemical behavior of TiO₂/Al₂O₃/PCL composite coatings in Hank's solution, *Materials Chemistry and Physics* **235** (2019) 121773. https://doi.org/10.1016/j.matchemphys.2019.121773
- [63] L. Freire, M. J. Carmezim, M. A. Ferreira, M. F. Montemor, The passive behaviour of AISI 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study, *Electro-chimica Acta* 55(21) (2010) 6174-6181. https://doi.org/10.1016/j.electacta.2009.10.026

- [64] M. C. Weidman, D. V. Esposito, I. J. Hsu, J. . Chen, Electrochemical stability of tungsten and tungsten monocarbide (WC) over wide pH and potential ranges, *Journal of The Electrochemical Society* **157(12)** (2010) F179. https://doi.org/10.1149/1.3491341
- [65] A. Dalmau, V.G. Pina, F. Devesa, V. Amigó, A.I. Muñoz, Electrochemical behavior of nearbeta titanium biomedical alloys in phosphate buffer saline solution, *Materials Science and Engineering: C* **48** (2015) 55-62. https://doi.org/10.1016/j.msec.2014.11.036
- [66] M. Anik, K. Osseo-Asare, Effect of pH on the anodic behavior of tungsten, *Journal of The Electrochemical Society* **149(6)** (2002) B224. https://doi.org/10.1149/1.1471544
- [67] S.H. Sarraf, S. Rastegari, M. Soltanieh, M. Deposition of mono dispersed Co–CeO₂ nanocomposite coatings by a sol-enhanced pulsed reverse electroplating: process parameters screening, *Journal of Materials Research and Technology* **23** (2023) 3772-3789. https://doi.org/10.1016/j.jmrt.2023.02.036
- [68] O. D. Oniku, R. Regojo, Z. Kaufman, W. C. Patterson, D. P. Arnold, Batch patterning of submillimeter features in hard magnetic films using pulsed magnetic fields and soft magnetizing heads, *IEEE Transactions on Magnetics* 49(7) (2013) 4116-4119. https://doi.org/10.1109/TMAG.2013.2237891
- [69] C. Gao, N. Qu, H. He, L. Meng, L. Double-pulsed wire electrochemical micro-machining of type-304 stainless steel, *Journal of Materials Processing Technology*, **266** (2019) 381-387. https://doi.org/10.1016/j.jmatprotec.2018.11.018
- [70] A. I. Dikusar, S. A. Silkin, Formation and breakdown of oxide films in high-rate anodic dissolution of chromium–nickel steels in electrolytes for electrochemical machining, Surface Engineering and Applied Electrochemistry 58(4) (2022) 313-322. http://dx.doi.org/10.3103/S1068375522040056
- [71] J. Wang, Z. Xu, T. Geng, D. Zhu, Dependency of the pulsed electrochemical machining characteristics of Inconel 718 in NaNO₃ solution on the pulse current, *Science China Technological Sciences* **65(10)** (2022) 2485-2502. https://doi.org/10.1007/s11431-021-2043-9
- [72] M. R. Akbarpour, F. Gharibi Asl, H. Rashedi, F. S. Torknik, Evaluation of Corrosion Resistance of Ni-Co/Gr Nanocomposite Coating Applied on Carbon Steel Substrate by Electro-Deposition Method under Pulse-Reverse Current, *Journal of Advanced Materials and Technologies* 11(3) (2022) 43-55. https://doi.org/10.30501/jamt.2022.299055.1190
- [73] V. Rajput, M. Goud, N. M. Suri, Electrochemical discharge machining: gas film electrochemical aspects, stability parameters, and research work, *Journal of The Electrochemical Society* **168(1)** (2021) 013503. https://doi.org/10.1149/1945-7111/abd516
- [74] N. Smets, S. Van Damme, D. De Wilde, G. Weyns, J. Deconinck, Time-averaged concentration calculations in pulse electrochemical machining, spectral approach, *Journal of Applied Electrochemistry*, **39** (2009) 2481-2488. http://dx.doi.org/10.1007/s10800-008-9608-1
- [75] F. Wang, J. Yao, M. Kang, Electrochemical machining of a rhombus hole with synchronization of pulse current and low-frequency oscillations, *Journal of Manufacturing Processes* **57** (2020) 91-104. https://doi.org/10.1016/j.jmapro.2020.06.014
- [76] A. Kumar, B. S. Pabla, Review on optimized process parameters of electrochemical machining and its variants, *Materials Today: Proceedings*, 46 (2021) 10854-10860. https://doi.org/10.1016/j.matpr.2021.01.807
- [77] M. Painuly, R.P. Singh, R. Trehan, Investigation into electrochemical machining of aviation grade inconel 625 super alloy: an experimental study with advanced optimization and microstructural analysis, *Aircraft Engineering and Aerospace Technology* **97(2)** (2025) 137-148. https://doi.org/10.1108/AEAT-08-2023-0211
- [78] G. Cui, D. Wang, Z. Zhu, W. Cao, T. Fu, Improvement on leveling ability in counter-rotating electrochemical machining by using a variable voltage, *The International Journal of Advanced Manufacturing Technology* **132(1)** (2024) 553-569. http://dx.doi.org/10.1007/s00170-024-13395-0

- [79] Z. Zhou, X. Fang, Y. Zeng, D. Zhu, Research on machining gap distribution in wire electrochemical micromachining, *Journal of The Electrochemical Society* **168(4)** (2021) 043503. http://dx.doi.org/10.1149/1945-7111/abf79c
- [80] G. Liu, Y. Zhang, W. Natsu, Influence of electrolyte flow mode on characteristics of electrochemical machining with electrolyte suction tool, *International Journal of Machine Tools and Manufacture* **142** (2019) 66-75. https://doi.org/10.1016/j.ijmachtools.2019.04.010
- [81] M. Painuly, R.P. Singh, R. Trehan, Investigation into surface quality of Inconel 625 processed with micro-electrochemical machining, *Journal of Solid State Electrochemistry* **29(4)** (2025) 1543-1559. https://doi.org/10.1007/s10008-024-06156-2
- [82] J. Wang, Z. Xu, J. Wang, D. Zhu, Electrochemical machining on blisk channels with a variable feed rate mode, *Chinese Journal of Aeronautics* **34(6)** (2021) 151-161. https://doi.org/10.1016/j.cja.2020.08.002
- [83] M. Painuly, R. P. Singh, R. Trehan, Simulation and experimental study for enhancing surface integrity of micro-slots processed on Nimonic-263 super alloy via electrochemical machining, *Materials and Manufacturing Processes* 39(13) (2024) 1842-1856. https://doi.org/10.1080/10426914.2024.2368551
- [84] R. N. Yadav, Electro-chemical spark machining—based hybrid machining processes: research trends and opportunities, *Proceedings of the Institution of Mechanical Engineers B* **233(4)** (2019) 1037-1061. https://doi.org/10.1177/0954405418755825
- [85] S. Li, Y. Wu, M. Nomura, T. Fujii, Fundamental machining characteristics of ultrasonic-assisted electrochemical grinding of Ti–6Al–4V, *Journal of Manufacturing Science and Engineering* **140(7)** (2018) 071009. https://doi.org/10.1115/1.4039855
- [86] Y. Xue, Z. Wang, Effect of Micro abrasion on Corrosion Behavior of NiTi Alloy in PBS Solution, Journal of Bio-and Tribo-Corrosion 6(3) (2020) 72. http://dx.doi.org/10.1007/s40735-020-00365-8
- [87] W. Choi, H. C. Shin, J. M. Kim, J. Y. Choi, W. S. Yoon, Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries, *Journal of Electrochemical Science and Technology* 11(1) (2020) 1-13. http://dx.doi.org/10.33961/jecst.2019.00528
- [88] H. Taheri, M. G. Bocanegra, M. Taheri, Artificial Intelligence, Machine Learning and Smart Technologies for Nondestructive Evaluation, Sensors 22(11) (2022) 4055. https://doi.org/10.3390/s22114055
- [89] R. Uddin, I. Koo, Real-time remote patient monitoring: a review of biosensors integrated with multi-hop IoT systems via cloud connectivity, *Applied Sciences* **14(5)** (2024) 1876. https://doi.org/10.3390/app14051876
- [90] V. J. Pulikkottil, S. Chidambaram, P. U. Bejoy, P. K. Femin, P. Paul, M. Rishad, Corrosion resistance of stainless steel, nickel-titanium, titanium molybdenum alloy, and ionimplanted titanium molybdenum alloy archwires in acidic fluoride-containing artificial saliva: An: in vitro: study, *Journal of Pharmacy and Bioallied Sciences* 8(1) (2016) S96-S99. https://doi.org/10.4103/0975-7406.192032
- [91] C. Guo, J. Qian, D. Reynaerts, A three-dimensional FEM model of channel machining by scanning micro electrochemical flow cell and jet electrochemical machining, *Precision Engineering* **52** (2018) 507-519. https://doi.org/10.1016/j.precisioneng.2018.02.002
- [92] B. R Acharya, S. Nayak, A. Mallick, CFD Analysis of Electrolyte Flow in Electrochemical Machining, JP Journal of Heat and Mass Transfer 17 (2019) 203-214. http://dx.doi.org/10.17654/HM017010203
- [93] V. Rajput, M. Goud, N. M. Suri, Finite element modeling for comparing the machining performance of different electrolytes in ECDM, *Arabian Journal for Science and Engineering* **46** (2021) 2097-2119. http://dx.doi.org/10.1007/s13369-020-05009-0

- [94] D. B. Jadhav, P. V. Jadhav, D. S. Bilgi, A. A. Sawant, Experimental investigation of MRR on inconel 600 using ultrasonic assisted pulse electrochemical machining, *IOP Conference Series: Materials Science and Engineering* 377(1) (2018) 012095. http://dx.doi.org/10.1088/1757-899X/377/1/012095
- [95] M. N. Ali, S. Chakravarty, P. Haldar, Experimental Investi gation and Optimization of MRR in μ-ECDM Process by Taguchi, RSM, PSO and ANN, *Suranaree Journal of Science and Technology* **29(5)** (2022). https://doi.org/10.3390/ma14195820
- [96] Y. Zhang, F. Gu, C. Chen, F.B. Mhahe, S. He, Research on machining Technology of Electrospark-electrochemical Hybrid Energy Field with tungsten hole, *International Journal of Refractory Metals and Hard Materials* **123** (2024) 106759. http://dx.doi.org/10.1016/j.ijrmhm.2024.106759
- [97] B. Mouliprasanth, P. Hariharan, Influence of variant electrolyte in electrochemical micromachining of micro holes in SMA using Taguchi optimization, *Russian Journal of Electrochemistry* **57(3)** (2021) 197-213. http://dx.doi.org/10.1134/S1023193521030095
- [98] E. J. Taylor, Developing industrial applications of pulse electrolytic processes, *Electrochemical Society Meeting Abstracts* MA2023-02 (2023) 1393-1393. *The Electrochemical Society*, Inc. http://dx.doi.org/10.1149/MA2023-02261393mtgabs
- [99] S. Saha, A.K. Mondal, R. Čep, H. Joardar, B. Haldar, A. Kumar, S. Ataya, Multi-response optimization of electrochemical machining parameters for Inconel 718 via RSM and MOGA-ANN, *Machines* **12(5)** (2024) 335. https://doi.org/10.3390/machines12050335
- [100] A. Pawar, D. Kamble, D.B. Jadhav, Experimental investigation on titanium alloys for machining of stepped circular holes using ultrasonic-assisted hybrid ECM, *Journal of Engineering and Applied Science* **71(1)** (2024) 58. https://doi.org/10.1186/s44147-024-00395-w
- [101] C. Micallef, Y. Zhuk, A.I. Aria, Recent progress in precision machining and surface finishing of tungsten carbide hard composite coatings, *Coatings* 10(8) (2020) 731. https://doi.org/10.3390/coatings10080731
- [102] S. Zhang, J. Zhou, G. Hu, L. Wang, Y. Xu, Process characteristics of electrochemical discharge machining and hybrid methods: a review, *The International Journal of Advanced Manufacturing Technology* **129(5)** (2023) 1933-1963. http://dx.doi.org/10.1007/s00170-023-12452-4
- [103] L. Zhang, L. Kong, W. Lei, Q. Li, Review of electrochemical discharge machining technology for insulating hard and brittle materials, Journal of the Brazilian Society of Mechanical Sciences and Engineering 46(3) (2024) 143. http://dx.doi.org/10.1007/s40430-024-04739-8
- [104] M. Munjal, T. Prein, M. M. Ramadan, H. B. Smith, V. Venugopal, J. L. Rupp, K. J. Huang, Process cost analysis of performance challenges and their mitigations in sodium-ion battery cathode materials, *Joule* **9(5)** (2025) 101871. https://doi.org/10.1016/j.joule.2025.101871
- [105] P. Jenis, T. Zhang, B. Ramasubramanian, S. Lin, P. R. Rayavarapu, J. Yu, S. Ramakrishna, Recent progress and hurdles in cathode recycling for Li-ion batteries, *Circular Economy* **3(2)** (2024) 100087. https://doi.org/10.1016/j.cec.2024.100087
- [106] J. Xiao, C. Jiang, B. Wang, A review on dynamic recycling of electric vehicle battery: disassembly and echelon utilization, *Batteries* **9(1)** (2023) 57. https://doi.org/10.3390/batteries9010057
- [107] Y. Liu, P. Ouyang, Z. Zhang, H. Zhu, X. Chen, Y. Wang, J. Lu, Developments, challenges and future trends in advanced sustainable machining technologies for preparing array microholes, *Nanoscale* **16(43)** (2024) 19938-19969. https://doi.org/10.1039/D4NR02910K
- [108] M. Sun, E. Toyserkani, A Novel Hybrid Ultrasound Abrasive-Driven Electrochemical Surface Finishing Technique for Additively Manufactured Ti6Al4V Parts, *Inventions* **9(2)** (2024) 45. https://doi.org/10.3390/inventions9020045
- [109] M. Asmael, A. Memarzadeh, A review on recent achievements and challenges in electrochemical machining of tungsten carbide, *Archives of Advanced Engineering Science* **2(1)** (2024) 1-23. https://doi.org/10.47852/bonviewAAES3202915

- [110] V. Subburam, S. Ramesh, L.I Freitas, Optimization and effect analysis of sustainable micro electrochemical machining using organic electrolyte, *In Futuristic Trends in Intelligent Manufacturing: Optimization and Intelligence in Manufacturing,* Springer International Publishing, 2021, 33-46. http://dx.doi.org/10.1007/978-3-030-70009-6 4
- [111] A. Speidel, J. Mitchell-Smith, D. A. Walsh, M. Hirsch, A. Clare, Electrolyte jet machining of titanium alloys using novel electrolyte solutions, *Procedia CIRP* **42** (2016) 367-372. http://dx.doi.org/10.1016/j.procir.2016.02.200
- [112] R. K. Upadhyay, A. Kumar, P. . Srivastava, High rate anodic dissolution of stainless steel 316 (SS316) using nano zero valent iron as reducing agent, *Journal of Applied Science and Engineering* **19(1)** (2016) 47-52. http://dx.doi.org/10.6180/jase.2016.19.1.06
- [113] R. K. Upadhyay, A. K. Chakraborty, S. S. Majhi, A. C. Singh, B. Kumar, N. Yadav, Influences of redox electrolyte containing AuNPs on microscopic surface structure, material removal and surface roughness of 20MnCr5 steel alloy during electrochemical machining, *Surface Science and Technology* **3(1)** (2025) 11. https://doi.org/10.1007/s44251-025-00074-9
- [114] R. K. Upadhyay, S. S. Majhi, S.S. Mahapatra, N. Yadav, A. K. Chakraborty, A. C. Singh, B. Kumar, A comparative study on material removal rate and surface roughness during electrochemical machining of 100Cr6 steel in oxidizing and reducing electrolytic environments. *Proceedings of the Institution of Mechanical Engineers E* (2025) 09544089251316751. https://doi.org/10.1177/09544089251316751
- [115] N. Besekar, B. Bhattacharyya, Electrochemical Characterization and Micromachining of Nitinol SMA by WECM Using Citric Acid Mixed H₂SO₄ Electrolyte, *ECS Advances* **2(3)** (2023) 032501. https://doi.org/10.1149/2754-2734/acf947
- [116] A. Sethi, B. R. Acharya, P. Saha, P. Study of the electrochemical dissolution behavior of Nitinol shape memory alloy in different electrolytes for micro ECM process, *The International Journal of Advanced Manufacturing Technology* **121(9)** (2022) 7019-7035. http://dx.doi.org/10.21203/rs.3.rs-1077024/v1
- [117] S. Ayyappan, K. Sivakumar, Investigation of electrochemical machining characteristics of 20MnCr5 alloy steel using potassium dichromate mixed aqueous NaCl electrolyte and optimization of process parameters, *Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture* **229(11)** (2015) 1984-1996. https://doi.org/10.1177/0954405414542136
- [118] S. Ayyappan, K. Sivakumar, Enhancing the performance of electrochemical machining of 20MnCr5 alloy steel and optimization of process parameters by PSO-DF optimizer, *The International Journal of Advanced Manufacturing Technology* **82** (2016) 2053-2064. https://doi.org/10.1007/s00170-015-7511-6
- [119] A. Dvivedi, P. Kumar, Computational modelling and experimental investigation of microelectrochemical discharge machining by controlling the electrolyte temperature, *Journal of Micromechanics and Microengineering* **34(3)** (2024) 035001. http://dx.doi.org/10.1088/1361-6439/ad2089
- [120] X. Cao, Y. He, S. Wang, Numerical simulation and experimental study on micromilling-assisted electrochemical machining, *International Journal of Electrochemical Science* **20(3)** (2025) 100934. https://doi.org/10.1016/j.ijoes.2025.100934
- [121] X. Zhou, Y. Jiang, Y. He, H. Guo, W. Gan, B. Xu, Multi-physical field simulation and experimental verification of electrochemical machining of curved holes, *International Journal of Electrochemical Science* **18(7)** (2023) 100193. https://doi.org/10.1016/j.ijoes.2023.100193
- [122] M. Zhang, M. Chouchane, S.A. Shojaee, B. Winiarski, Z. Liu, L. Li, Y.S. Meng, Coupling of multiscale imaging analysis and computational modeling for understanding thick cathode degradation mechanisms, *Joule* **7(1)** (2023) 201-220. https://doi.org/10.1016/j.joule.2022.12.001

- [123] S. D. Nagarale, B. P. Patil, Accelerating Al-Based Battery Management System's SOC and SOH on FPGA, Applied Computational Intelligence and Soft Computing 2023(1) (2023) 2060808. https://doi.org/10.1155/2023/2060808
- [124] W. Cao, D. Wang, G. Cui, J. Zhang, D. Zhu, Improvement on the machining accuracy of titanium alloy casing during counter-rotating electrochemical machining by using an insulation coating, *Surface and Coatings Technology* **443** (2022) 128585. https://doi.org/10.1016/j.surfcoat.2022.128585
- [125] A. V. Ajay, S. S. Nair, S. Mohan, Y. Vaisakh, Investigation on the Influence of Nano Structured Zirconia Coating on the Corrosion Inhibition of SS 304 Stainless Steel, in *Lecture Notes on Multidisciplinary Industrial Engineering (LNMUINEN)*, K. Antony, L. Davim, Eds, Advanced Manufacturing and Materials Science (2018) 203-212. http://dx.doi.org/10.1007/978-3-319-76276-0 20