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Abstract

Electrochemical machining (ECM) is a non-traditional, precision machining process
involving the removal of material through anodic dissolution. It is commonly utilized for
machining complex geometries in conductive materials, especially in aerospace,
biomedical, and automotive sectors. While having numerous benefits, ECM also has a
major challenge: the development of a passive oxide layer on the surface of the workpiece.
The formation of this layer depends on various factors, such as workpiece material,
electrolyte composition, current density, and machining conditions. If not properly
controlled, it can cause poor surface finish, dimensional errors, and increased energy
consumption. To counter this problem, several control strategies have been devised that
play a crucial role in breaking down the passive film. This review critically analyses and
compares these strategies for inhibiting passive layer growth in ECM. It highlights both
traditional and established techniques as well as novel developments like hybrid ECM
methods, Al-driven process optimization, and real-time monitoring systems. The review
aims to provide a material-specific and application-oriented perspective, highlighting the
advantages, limitations, and technical viability of each strategy. By integrating findings
from experimental studies, simulation work, and emerging technologies, this review
provides a comprehensive resource for researchers and practitioners seeking to enhance
the reliability, performance, and precision of ECM processes in high-tech manufacturing.
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measures

Introduction

Electrochemical machining (ECM) is a sophisticated and non-conventional machining process
that utilizes electrolysis to remove material from electrically conductive workpieces immersed in
electrolyte upon supply of DC current, as shown in Figure 1. In contrast to conventional techniques
such as milling or drilling, which rely on direct mechanical contact between the tool and the
workpiece, ECM does not involve physical contact [1]. This contactless machining significantly
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reduces tool wear and enables the machining of complex shapes and subtle geometries that are
difficult to achieve with conventional methods. Consequently, ECM has emerged as a method of
choice in sectors where precision, surface finish and tool life are significant factors, such as
aerospace, biomedical, automotive, and energy industries [2]. One notable disadvantage of ECM is
the tendency for a passivation layer to form on the workpiece surface during the dissolution
process [3]. The passive film thus formed is typically composed of metal oxides and hydroxides,
resulting from electrochemical reactions in which the tool serves as the cathode, the workpiece as
the anode, and the electrolyte. This layer acts as an ionic transport barrier, inhibiting the process of
anodic dissolution during machining. This hinders not only the material removal rate (MRR) but also
increases electrical resistance, leading to higher energy consumption and lower machining accuracy
and surface finish [4]. The development and accumulation of this passive film are affected by several
factors, including the type of material being machined, the composition and pH of the electrolyte,
the current density, the temperature, and the machining time [5]. Materials such as stainless steel,
titanium alloys, and nickel superalloys are especially prone to developing recalcitrant oxide layers
due to their high corrosion resistance and tendency to passivate [6]. If not properly managed, the
existence of this passive layer will negatively affect dimensional precision, lengthen machining time,
and lead to inconsistencies in results [7]. To eliminate such problems, a proper understanding of the
electrochemical mechanisms associated with oxide growth is crucial. Using optimized electrolytes,
applying pulse power supplies, and using additional techniques like ultrasonic stirring are some ways
of preventing or disturbing passive layer development. Controlling this effectively is necessary to
maximize ECM performance, ensure process consistency, and provide the high accuracy demanded
by modern manufacturing techniques.

Pressure Gauge

Flow Meter

- — -] Workpiece

Figure 1. Electrochemical machining setup

Mechanisms of passive oxide layer formation in ECM

Oxide layer formation and its growth during ECM are significant issues, especially when
machining materials with high oxygen affinity, such as stainless steels, titanium alloys, and nickel-
based superalloys. These materials tend to form a stable oxide layer on their surface as a corrosion
protection mechanism in aggressive environments [8]. Although this passivation is desirable in most
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applications, it becomes undesirable in ECM. The formed oxide film acts as an insulating barrier at
the electrode-electrolyte interface, inhibiting the anodic dissolution process that is critical for
effective material removal [9]. As the passive layer grows thicker, it results in a decrease in the MRR,
enhances the resistance of the electrochemical cell, and leads to greater energy consumption.
Additionally, the uneven dissolution caused by the presence of a layer affects surface quality and
dimensional accuracy. A stepwise flowchart illustrating the mechanism of passive layer formation
and its buildup is shown in Figure 2.
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Figure 2. Process flowchart showing the stages of passive layer formation and buildup

Electrochemical reactions

At the core of ECM, electrochemical reactions govern material removal, involving an anode (the
workpiece) and a cathode (the tool) submerged in an electrolyte. However, unwanted side reactions
contribute to the formation of a passive oxide layer [10]. The fundamental material removal reaction
is presented in Equation (1).

M - M™+ ne (1)
where M is the metal, M"" is the dissolved metal ion, and ne” represents the number of electrons
released. During anodic polarization, oxygen evolves from water oxidation as shown in Equation (2):

2H,0-> 0+ 4H" + 4e (2)

Oxygen bubbles at the workpiece surface cause localized current density variations, resulting in
non-uniform machining [11].

Formation of metal oxides and hydroxides (passive layer growth)

Dissolved metal ions react with oxygen or hydroxyl ions, forming oxide/hydroxide layers as
presented in Equations (3) and (4) for iron-based alloys [12].

Fe2*+ 20H - Fe(OH); (3)

4Fe(OH)7 + 02 + 2H20 > 4Fe(OH)3 (4)

The Fe(OH)s further dehydrates to form Fe;03 or Fe304, contributing to a stable oxide film that
resists further dissolution.
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Similarly, as presented in Equations (5) and (6), Ti** in titanium alloys reacts with water to form a
stable TiO; layer, releasing H*ions, which indicates oxide film formation and local acidification. Ni%*
in nickel alloys reacts with hydroxide ions to form Ni(OH),, indicating the formation of a hydroxide
layer.

Ti**+ 2H,0 > Ti0, + 4H* (5)
NiZ*+ 20H=> Ni(OH), (6)

These oxide films hinder ECM efficiency. The mechanism of oxide layer formation during
electrochemical dissolution of a metal workpiece is illustrated in Figure 3.

2HO — O+ 4H + 4 ool M — M+ ne”
2H +2e — H;
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Figure 3. Oxide layer formation mechanism

Influence of workpiece material composition on passive layer formation

The composition of the workpiece material has a major influence on the properties and stability of
the passive oxide layer. Various materials exhibit different levels of passivation due to variations in
their electrochemical reactivity, oxide layer structure, and oxygen affinity, as well as the physical pro-
perties of the oxide films deposited on different metals [13]. For example, stainless steels, which are
primarily iron-chromium alloys, exhibit high passivation through the formation of a stable chromium
oxide (Cr203) coating, which is highly resistant to dissolution [14]. Additional alloying elements, such
as molybdenum and nickel, further enhance corrosion resistance and passive layer stability, present-
ing additional challenges in ECM [15]. Titanium and its alloys form a highly stable titanium dioxide
(TiO,) layer, which is insulating and strongly adherent, significantly impeding anodic dissolution [16].
Likewise, nickel-based superalloys such as Inconel and Hastelloy form dense nickel oxide (NiO) and
nickel hydroxide (Ni(OH),) layers that are difficult to remove because of strong metal-oxide bond-
ing [17]. These alloys tend to require a suitable electrolytic environment with complexing agents, such
as EDTA or citric acid, to facilitate oxide breakdown [18]. Aluminium alloys form a chemically resistant
aluminium oxide (Al>Os) film, requiring fluoride-containing electrolytes for successful oxide dissolu-
tion [19]. However, materials like copper and low-carbon steels do not exhibit much passivation.
Copper does not form a stable oxide film under normal ECM conditions, whereas low-carbon steels
form a porous iron oxide layer that does not significantly impede the machining process [20,21].
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Effect of electrolyte properties on passive film formation

The electrolyte plays a crucial role in ECM by affecting both passive oxide layer growth and material
removal efficiency [22]. Its composition determines ion transport, reaction kinetics, and passive film
behaviour during anodic dissolution. Electrolyte pH is a key factor: acidic solutions (pH < 7), such as
HCl, H,S04, and HNO3s, promote oxide breakdown via high H* concentrations, enhancing reactivity and
dissolution [23]. However, strong acids may cause uncontrolled corrosion, limiting their use in
precision applications. Neutral electrolytes (pH=7) such as NaNOsand NaCl offer controlled dissolution
with minimal side reactions, making them ideal for maintaining surface integrity [24]. Alkaline
electrolytes (pH > 7), including NaOH and KOH, promote the formation of stable oxides/ /hydroxides,
such as Al(OH); and Fe,0s, which reduces removal efficiency and surface quality [25].

The conductivity of the electrolyte influences ionic mobility and current distribution [26]. High-
conductivity electrolytes, such as NaCl, NaNOs, and H,SO04, enable uniform charge transfer and
efficient oxide disruption [27]. Low-conductivity solutions, such as distilled water, cause non-
uniform current flow, passive layer buildup, and poor finishes [28].

Electrolyte flow rate is equally critical. High flow rates enhance mass transport and clear by-
products from the interelectrode gap [29], reducing passive film formation and improving machining
consistency. Low flow rates cause by-product accumulation, promoting passivation, uneven
removal, and reduced accuracy [30].

Temperature also impacts ECM. Elevated temperatures increase oxide solubility and dissolution
rates, benefiting passivation-prone metals [31]. However, excessive heat may degrade tooling, de-
compose the electrolyte, or trigger side reactions, compromising surface quality. Low temperatures
hinder ion mobility and conductivity, reducing efficiency and raising energy consumption [32]. An
optimal temperature range of 30 to 60 °C is crucial for maintaining a balance between dissolution,
passive film disruption, and system stability.

In summary, achieving high-performance ECM requires careful control of electrolyte pH,
conductivity, flow rate, and temperature to minimize passive layer formation and maximize material
removal efficiency.

Role of process parameters on oxide layer development

In ECM, the formation and disruption of the passive oxide film are controlled by key machining
parameters, including voltage, current density, interelectrode gap, flow rate, tool feed, machining time,
and pulse characteristics. Applied voltage directly impacts the electric field between the tool and
workpiece, thereby influencing anodic dissolution [33,34]. Low voltages fail to break passive films on
metals like titanium, while excessive voltages enhance oxidation, stabilizing these films and reducing
surface finish quality [35]. Thus, maintaining optimal voltage is essential for uniform oxide breakdown.

Current density influences MRR; moderate levels enhance it, while extremes cause localized
heating or poor dissolution [36]. The inter-electrode gap affects both the electric field and debris
flushing. Tight gaps improve dissolution but hinder flushing, promoting oxide accumulation; wider
gaps lower field strength but improve debris removal [37]. Tool feed rate affects fresh surface
exposure; inappropriate rates either overload the gap with by-products or limit dissolution time [38].
Electrolyte concentration also governs conductivity; higher concentrations improve MRR but may
trigger side reactions or erosion [39].

Pulse parameters in pulsed ECM further influence performance. Short, controlled pulses help
disrupt oxide layers and renew the electrolyte, whereas continuous DC can risk electrolyte
degradation and permanent passivation [40].
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Oxide formation naturally occurs during anodic reactions, creating a barrier that inhibits further
dissolution [41]. Without regular disruption, this layer restricts electrolyte contact, reduces MRR,
and destabilizes the process, especially under high voltage conditions, as illustrated in the graph
shown in Figure 4. This can cause unstable machining conditions and variable removal rates,
particularly at higher voltages where the oxide layer tends to grow more rapidly [42,43].
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Figure 4. MRR in ECM with and without oxide disruption

In ECM, the lack of oxide disruption leads to the buildup of passive films, causing non-uniform
material removal and surface defects such as pitting and increased roughness [44]. Thicker oxide
areas resist dissolution, while thinner regions dissolve faster. Under steady DC conditions, uncon-
trolled oxide growth degrades surface finish. Conversely, disruption techniques such as pulsed
current, ultrasonic agitation or tool vibration enable consistent passive layer breakdown, exposing
fresh metal uniformly [45]. This results in smoother surfaces and stable dissolution fronts,
minimizing over-etching and maintaining integrity [46]. Research shows that with oxide disruption;
the surface roughness decreases consistently as voltage increases. Figure 5 illustrates this,
comparing surface quality at different voltages with and without disruption, underscoring the
importance of oxide control in optimizing ECM performance [47,48].
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Figure 5. Surface roughness in ECM with and without oxide disruption

Given the persistent challenges of passive oxide layer formation in ECM, this review presents a
focused and comparative analysis of control strategies specifically designed to address this issue.
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Unlike broader reviews, it focuses on the mechanisms, impacts, and suppression methods of passive
film formation across various materials and machining conditions. Five core strategies are
examined: electrolyte modification, pulsed/reverse-pulsed ECM, hybrid techniques, process
parameter optimization, and real-time adaptive control systems, including Al-based methods. Each
is discussed from a material-specific standpoint with quantitative metrics such as MRR, surface
roughness, and oxide thickness. Reported improvements include MRR increases up to 45 %, surface
roughness reductions by 30 to 60 %, and oxide thickness decreases by several micrometres under
optimized conditions [49,50]. The review also highlights the role of advanced computational tools
and real-time monitoring technologies in enhancing accuracy and process reliability. This synthesis
bridges experimental, simulation, and application-based research, offering a comprehensive
reference for improving ECM’s industrial viability.

Literature review on control strategies for passive oxide layer disruption

The literature provides insights into controlling passive oxide layers in ECM by understanding
material electrochemistry and electrolyte chemistry. Although beneficial in its natural state, the
oxide layer hinders anodic dissolution in ECM. Various strategies have been explored to weaken or
eliminate it for uniform material removal [51]. A schematic illustrating the effects of these strategies
on oxide formation is shown in Figure 6.
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Figure 6. Control strategies impacting the passive oxide layer disruption

Electrolyte selection and modification

Electrolyte selection plays a pivotal role in ECM performance, impacting dissolution efficiency,
surface finish, and compatibility with workpiece materials. Common choices include sodium
chloride (NaCl) and sodium nitrate (NaNOs), favoured for their conductivity and ability to interact
with passive oxide films [52,53]. NaCl, rich in Cl-ions, effectively disrupts oxide layers like Cr,03and
TiO,, making it suitable for stainless steel and titanium alloys by forming soluble metal-chloride
complexes [54,55]. NaNOs, being less aggressive, offers electrochemical stability and is better suited
for moderately passivating materials, though it may require enhancement for more resistant
substrates. Additives such as chelating agents or oxidizers are often introduced to improve passive
film breakdown [56]. Moreover, inhibitors help to control electrochemical conditions and prevent
unwanted side reactions, contributing to stable operation. Thus, tailoring electrolyte composition,
including additives and inhibitors, is essential to balance aggressiveness, conductivity, and process
control for optimal ECM results. This strategy is presented with a material-specific perspective,
highlighting how different electrolytes interact with varying levels of material passivation. For
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instance, NaCl proves highly effective for stainless steel and titanium alloys, while a mixed ethylene
glycol NaCl electrolyte enhances surface integrity in Cu-based shape memory alloys. The perfor-
mance is substantiated through quantitative measures such as MRR (0.323 mg min!), surface rough-
ness (0.384 um), and reduction in oxide thickness, which contributes to more stable and uniform
anodic dissolution [57]. Studies have shown that optimized electrolytes can reduce oxide film
thickness by several micrometres, improving machining consistency and dimensional accuracy [58].
Chelating agents such as ethylenediaminetetraacetic acid (EDTA), citric acid, and oxalic acid are
widely used in ECM to form stable metal-ion complexes, facilitating oxide layer dissolution and
improving surface finish and machining uniformity [59]. Surfactants enhance electrolyte wetting and
lower surface tension, aiding in debris and oxide removal from the machining gap [60,61], which
stabilizes current density and reduces localized heating. De-passivating ions like fluoride or chloride
actively dissolve passive films, particularly on TiOzand Al,O3 surfaces, by forming soluble complexes
[62]. Inhibitors are added to prevent localized corrosion and unwanted side reactions, maintaining
electrolyte stability. Optimized additive combinations enhance material removal, precision, and
surface quality. Maintaining stable pH is equally crucial, as anodic reactions and gas evolution cause
local pH fluctuations [63,64]. Buffer systems such as phosphate, borate, or citrate regulate pH within
the optimal range (6 to 8) [65], with phosphate buffers being especially effective. pH control is
critical in micro-ECM and with highly passivating materials [66].

Pulsed and reverse-pulsed ECM

Pulsed and reverse-pulsed ECM are advanced methods developed to mitigate passive oxide film
formation, which obstructs material removal during machining [67]. Continuous DC ECM promotes
stable oxide growth, reducing efficiency and accuracy. Pulsed ECM improves performance by
introducing on-time and off-time intervals, allowing electrolyte replenishment, heat dissipation, and
oxide dissolution through localized effects [68]. This enhances anodic dissolution and ion transport
in the machining gap. Reverse-pulsed ECM further improves results by momentarily reversing
polarity, creating cathodic conditions that destabilize oxide layers like Cr 03 and TiO; on stainless
steel and titanium, respectively [69,70]. These techniques improve surface finish, MRR, and
dimensional accuracy, especially in passivating or hard-to-machine materials [71].

Pulse duration and frequency are critical. Short pulses deliver intense current bursts that disrupt
oxide films before they stabilize, enhancing MRR and avoiding persistent passivation seen in DC
ECM [72,73]. In contrast, long pulses or insufficient off-time can lead to electrolyte depletion and
oxide reformation, reducing performance [74]. Although low-frequency pulsing may increase MRR, it
can also trigger passivation if not properly managed [75]. Therefore, optimizing pulse parameters is
essential for achieving efficient and consistent ECM results across different materials. This strategy is
evaluated from a material-specific perspective, particularly for difficult-to-machine and highly
passivating materials, such as Inconel 625 and titanium alloys [76]. Quantitative improvements in
process performance have been validated through measurable parameters, including an increase in
MRR (up to 3.1587 mg min-1), a reduction in radial overcut (71.96 um), and an enhancement in surface
finish. Although direct data on oxide thickness reduction is limited, the improved dissolution
behaviour under optimized pulse conditions strongly indicates effective passive layer disruption.
These results confirm the suitability of pulse control for precise and efficient ECM across a wide range
of materials [77].
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Process parameter optimization

Optimizing ECM parameters is essential for minimizing passive layer formation, enhancing MRR,
and achieving high precision machining of complex, hard-to-machine materials. Applied voltage
significantly influences electrochemical reaction rates; appropriate control prevents thermal
instability and abnormal oxide growth, while fluctuations affect dimensional accuracy and surface
finish [78]. The interelectrode gap plays a crucial role in electric field distribution and electrolyte
flow. A balanced gap avoids arcing or voltage loss, maintaining uniform current and minimizing oxide
buildup [79]. The electrolyte flow rate governs the removal of metal ions and by-products; a higher
flow rate reduces passivation and maintains chemical stability [80]. Electrolyte concentration affects
conductivity and dissolution kinetics, where optimal levels promote efficient ion transport without
causing passivation or erosion. These parameter optimizations have demonstrated improved
machining outcomes, higher MRR, better surface finish, and oxide disruption in materials like
Inconel 625 and Nimonic-263. Electrolyte concentration and pulse frequency significantly affect
surface roughness and roundness error, achieving minimum roughness and roundness error values.
Findings of this study on micro-ECM of Inconel 625 underscore the vital role of optimized electrolyte
conditions in enhancing surface quality during micro-machining of nickel-based superalloys [81]. The
tool feed rate must be synchronized with the material removal rate. Too rapid feed rate will result
in poor machining or tool-workpiece contact, while too low of a rate introduces passive layer build-
up [82]. Simulation and experimental research on the micro ECM of Nimonic-263 superalloy showed
that the process parameters, such as applied voltage, tool feed rate, and tool material, significantly
affect MRR and surface roughness. The use of copper and SS304 electrodes with varying conduc-
tivity affected electrolyte characteristics and electric field distribution, validated through COMSOL
simulations. These results show the significance of optimizing electrochemical conditions and tool-
electrolyte interactions to improve surface integrity in precision machining [83].

Hybrid machining approaches

Hybrid machining methods have developed as an effective means to overcome the limitations of
conventional ECM, particularly in terms of passive layer disturbance. Ultrasonic-assisted ECM (UA-ECM)
introduces high-frequency mechanical vibrations into the electrolyte, enhancing turbulence and
disrupting passive film formation. Experiments have proved that ultrasonic assistance improves material
removal rates, particularly in challenging-to-machine alloys [84]. Laser-aided ECM (LA-ECM) is another
novel hybrid method which utilizes local heating to stress the passive oxide layer before electrochemical
dissolution [85]. This method was found to be highly effective for machining ceramics and other non-
metallic conductive materials that are prone to rapid passivation. Studies have shown that the use of
ECM with mechanical micro-abrasion or brushing, which involves motion-controlled motion, still
enhances passive layer disruption, leading to more consistent material removal [86]. These findings
emphasize how hybridization can optimize ECM performance based on the specific characteristics of the
workpiece material.

Real-time monitoring and adaptive control systems

The complexity associated with the ECM process has necessitated the use of real-time monitoring
systems to dynamically modify machining parameters and prevent passive layer effects. Electroche-
mical impedance spectroscopy (EIS) is the most widely utilized method for observing passive layer
creation in real-time, with simultaneous corrective measures undertaken in real-time [87]. The use of
Al and ML algorithms is also being investigated for predicting the response of the passive oxide layer
and modifying the ECM settings to the optimal value. These advances have led to adaptive ECM
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systems that automatically control electrolyte composition, pulse parameters, and machining con-
ditions using real-time data [88]. Quantitative improvements in MRR, surface finish, and process
stability have been reported where Al-driven adjustments dynamically respond to oxide layer for-
mation. Real-time EIS feedback and sensor data help to regulate oxide thickness, ensuring consistent
dissolution and enhanced machining precision. These advancements underline the potential of intel-
ligent systems in tailoring ECM processes to specific material responses. On top of that, internet of
things (loT) enabled sensors to have also been integrated into ECM setups, transmitting process infor-
mation to cloud-based systems for predictive maintenance and performance enhancement [89].

Material-dependent factors and computational modelling

The relationship between the electrolyte chemistry and workpiece material properties is vital to ECM
performance. Different materials passivate at varying rates, so it is essential to design specialised
electrolytes to ensure maximum machining efficiency. For instance, stainless steels and titanium alloys,
which are commonly used in aerospace and biomedical fields, have a high tendency to form a passive
layer due to their affinity with oxygen [90]. In such cases, certain electrolytes containing complexing
agents or active de-passivators need to be employed to ensure uniform material dissolution. Advance-
ments in computational simulation and modelling have provided deeper insight into the behaviour and
control mechanisms of passive oxide layers. Finite element analysis (FEA), computational fluid dynamics
(CFD), and multi-physics simulations have been extensively used to predict passive layer growth, ion
transport dynamics, and electrolyte flow patterns in ECM [91,92]. These predictive models enable
researchers to design the optimal process parameters and electrolyte composition before conducting
actual experimental trials, thereby saving considerable time and expense in process development. The
literature highlights several control strategies for controlling passive oxide layer formation in ECM, each
with specific strengths and limitations based on material type, machining conditions, and precision
requirements. Electrolyte modification is a cost-effective method for chemically controlling oxide
stability, but it may require the addition of additives or high flow rates to passivate materials. Pulsed and
reverse-pulsed ECM dynamically disrupt oxide layers and enhance thermal regulation, improving MRR
and surface finish, especially effective for titanium and nickel alloys, though requiring careful pulse
parameter tuning. Hybrid methods like ultrasonic- or laser-assisted ECM enable mechanical or thermal
oxide breakdown and are effective for high-strength materials, but involve higher cost and complexity,
limiting them to specialized sectors. Optimizing parameters such as voltage, gap, and flow rate provides
scalable efficiency gains but demands process stability and testing. Adaptive systems with real-time
monitoring offer precise oxide control via Al or sensors but are expensive. Combining these strategies
can achieve superior ECM outcomes across applications.

Comparative analysis of control strategies

Comparison of MRR across control strategies in ECM

The comparative bar graph shown in Figure 7 demonstrates the MRR attained through various
advanced control approaches in ECM [93-96]. Such approaches have been investigated extensively
in earlier research to optimize machining performance, especially MRR, which continues to be an
important measure of process efficiency.

Electrolyte composition significantly affects MRR in ECM by enhancing ion transport through
optimized conductivity, viscosity, and chemical stability. Pulsed and reverse-pulsed ECM prevents
passive film formation, improving MRR and dimensional accuracy.
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Figure 7. Comparison of MRR across control strategies in ECM

Optimized parameters, such as voltage, current density, interelectrode gap, and flow rate, further
enhance dissolution while reducing stray corrosion. Hybrid ECM techniques, such as those utilising
ultrasonic or laser assistance, enhance material removal.

Real-time monitoring with adaptive control dynamically adjusts parameters for consistent, high
MRR. Material-specific strategies supported by computational modelling enable precision machining
of complex alloys, prioritizing accuracy. These integrated approaches collectively aim to maximize
ECM performance and machining efficiency.

Comparison of surface roughness and overcut across control strategies in ECM

The comparative bar graph illustrated in Figure 8 depicts the effect of different control strategies
applied in ECM on two prime quality parameters: surface roughness and overcut [97-100].
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Figure 8. Comparison of surface finish and overcut across control strategies in ECM

Both parameters directly control the dimensional accuracy and surface integrity of machined
parts and have been extensively explored to maximize ECM performance.
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Electrolyte selection affects surface finish by improving ion dissolution and flushing, moderately
enhancing quality and slightly reducing overcut. Pulsed and reverse-pulsed ECM significantly lowers
surface roughness and overcut by minimizing heat and passive layer formation. Optimizing para-
meters like interelectrode gap, current density, and flow rate stabilizes the electrochemical zone and
improves uniformity. Hybrid strategies, such as ultrasonic-assisted ECM, enhance circulation and ma-
terial removal for better finishes. Real-time monitoring and adaptive control dynamically optimize
conditions, achieving minimal overcut. Material-specific strategies with computational modelling furt-
her improve precision, emphasizing advanced control methods for high-accuracy ECM performance.

Effectiveness of various approaches for different materials

The effectiveness of control strategies in ECM depends on the electrochemical and physical
properties of workpiece materials. As shown in Table 1, material-specific characteristics significantly
influence strategy selection and performance [101-103].

Table 1. Comparison of ECM control strategies based on workpiece material characteristics
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optimization . control
MRR resilience
Hybrid machining Effective for Highl
(ECM ultrasonics/ intricate Highly effective & .y Moderate Rarely needed
. effective
/laser/mechanical) features
Excellent f ial
Real-time monitoring xce e'n.t or Cru'C|a dug to Essential for Useful for .
. precision variable oxide . . Optional
& adaptive control - s consistency micro-ECM
machining stability
R i - D N
Material specific equ'lres.de eman.ds eed§ Fluoride -
. . passivation aggressive complexing . Minimal concern
considerations i essential
agents conditions electrolytes
Useful in ele-
Computational Predicts oxide  Helps optimize setutin ele Beneficial for Simple modelling
) ; ctrolyte-agent _. . -
modelling dynamics well electrolytes interaction film evolution sufficient

Stainless steel and aluminium/magnesium alloys rapidly form passive films, requiring chloride or
fluoride-based electrolytes to destabilize oxides and maintain conductivity. Titanium and nickel-
based superalloys form highly stable oxides, which require aggressive electrolytes, such as chelating
agents or advanced methods like pulsed/reverse-pulsed ECM, to periodically disrupt passive layers
and improve removal without thermal damage. Hybrid machining methods enhance oxide
disruption via localized energy or mechanical stirring, benefiting hard-to-machine, chemically stable
alloys with low dissolution rates. Real-time and adaptive control systems address process
instabilities in reactive alloys by dynamically adjusting parameters to maintain optimal conditions.
Computational modelling aids in predicting oxide behaviour, electrolyte interaction, and material
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response, supporting efficient control algorithm development and virtual optimization for complex,
passivation-sensitive alloys. Thus, ECM control strategies remain highly material dependent.

Cost-benefit analysis of implementing control measures

Control strategies in ECM must be evaluated for both technical effectiveness and economic
viability. Table 2 outlines cost-benefit trade-offs involving investment, operational expenses, and
efficiency gains [104-106]. Electrolyte selection/modification involves low-to-medium initial costs and
moderate operating expenses, offering cost-effective performance in most applications. Pulsed and
reverse-pulsed ECM techniques incur moderate equipment/control costs but provide high precision
and oxide breakdown efficiency, justifying use in aerospace and medical sectors. Process parameter
optimization, like voltage, temperature, and electrolyte flow, offers high ROl due to low cost and
simplicity, with moderate performance gains, making it ideal for standard setups. Hybrid techniques
(e.g. ECM with ultrasonic/laser assistance) yield high efficiency for hard-to-machine or valuable
materials but are reserved for niche, high-cost applications. Real-time monitoring and adaptive
systems demand high initial investment yet enhance precision and consistency in automated or high-
precision environments. Computational modelling, despite moderate setup costs, provides long-term
R&D benefits by enabling process design and minimizing experimental iterations.

Table 2. Cost justifications and efficiency gains of advanced control measures in electrochemical machining

Control strategy Initial investment Operational cost Efficiency gain Cost justification
Electrolyte selection & . . Moderate to Cost-effective for most
- Low to medium Medium . .
modification high applications

Pul -pul tified i
ulsed & reverse-pulsed Medium Medium High Justi |eq in aerospace,
ECM medical sectors
P t
roces§ pgrarne er Low Low Moderate High ROI due to simplicity
optimization
Hybrid machining - .
f I high-va-
(ECM ultrasonics/ Low High Very high Justified only in high-va

. lue or complex materials
/laser/mechanical)

B ited for high
Real-time monitoring & est suited for hig

. High Medium to high High precision or automated
adaptive control .
environments
Computational Medium Low (simulation Indirect (design Long-term benefit,
modelling cost) optimization)  especially in R&D setups

Industry-specific adoption and practical feasibility

The effectiveness of ECM control strategies differs by industry due to variations in materials,
precision, production volume, and cost constraints. Table 3 summarizes industry-specific priori-
ties [107,108]. Aerospace requires high accuracy for heat-resistant alloys, employing pulsed ECM,
hybrid techniques, adaptive control, and simulation to achieve dimensional precision and manage
oxide layers. Automotive sectors focus on cost effectiveness, preferring optimized electrolytes and
tenable parameters for efficient, economical machining. Biomedical fields need precise, contami-
nation-free machining; hence, pulsed ECM, reactive electrolytes, and real-time monitoring are
favoured for implants and tools. Defence applications adopt hybrid ECM and Al-driven optimization
to meet diverse machining demands with moderate-to-high feasibility. The tool and die industries
typically use basic ECM setups with minimal control strategies, due to the simpler shapes and cost
considerations. For electronics and MEMS, micro-ECM with tight control and modelling ensures the
production of intricate, miniaturized components, supporting both precision and high repeatability.
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Table 3. Industry-wise preferred control strategies and feasibility

Industry Preferred control strategies Feasibility
Pulsed ECM, hybrid machining, adaptive High (due to need for precision
Aerospace . . . .
control, computational modelling and hard-to-machine materials)
. Electrolyte selection, parameter High (focus on cost-efficiency and
Automotive S
optimization throughput)
. . Pulsed ECM, real-time monitoring, High (tight tolerances,
Biomedical . . . .
aggressive electrolytes biocompatible materials)
Defence Hybrid ECM, real-time systems, Al based Moderate to high (for advanced
optimization materials)
Tool & die Standard ECM with optimized parameters High (low complexity, cost-
manufacturing and electrolyte choice sensitive applications)
Electronics/MEMS Micro ECM with prec‘ise parametgr control  High (for feature min.iz.aturization
and computational modelling and repeatability)

The comparative analysis shows that while electrolyte modification, pulse control, hybridization,
optimization, and monitoring offer distinct benefits, their effectiveness depends on materials and
conditions [109,110]. No single method suffices; instead, tailored combinations enable optimal ECM
performance and guide future research, as detailed in the concluding section.

Research progresses on control strategies for disrupting passive oxide layer formation

ECM has made significant advancements over the past few years, with the need to machine hard-
to-cut and intricate materials more accurately and efficiently. Among the major problems in ECM, one
of the long-standing issues is the formation of passive oxide films on workpiece surfaces, which
restricts anodic dissolution and reduces machining performance. Current research has focused on
developing new methods and technologies to defeat this challenge and improve ECM efficiency.

Novel electrolyte compositions for enhanced ECM performance

Advancements in ECM focus on developing novel electrolytes to enhance efficiency and surface
finish, particularly for high-passivation materials. Standard electrolytes, such as NaNOs and NaCl, offer
conductivity but struggle to dissolve stable oxide layers [111]. Reducing agents are added to break
down or prevent passive film formation, enabling continuous anodic dissolution [112]. Some of the
most used are gold nanoparticles (AuNPs), which are particularly useful in improving the electroche-
mical machining characteristics of 20MnCr5 steel alloy [113]. Copper ions (Cu?* ions) facilitate the low-
valence dissolution of metal atoms in iron-based alloys and prevent the accumulation of dissolution
by-products, such as metal hydroxides and gas bubbles, near the tool cathode [114]. Besides these
reducing agents, chelating agents such as EDTA, citric acid, and oxalic acid have been proven use-
ful [115,116]. They become bound to the metal ions through the development of soluble complexes
that compromise the integrity of passive layers; therefore, they are especially suitable for difficult
materials such as nickel-based superalloys and copper alloys, where passivation greatly hinders ECM
efficiency. Oxidizing agents such as potassium dichromate (K2Cr,07) and hydrogen peroxide (H,0;) are
also utilized in ECM environments where the degradation rate of oxides needs to be achieved quickly.
These agents enhance the dissolution of metal oxides by adding more oxidative capacity, increasing
the rate of reaction and supporting a more vigorous attack on the passive film [117,118].

Computational modelling and simulation of oxide layer behaviour

Computational modelling and simulation are essential for understanding oxide layer formation
and growth during ECM, especially for passivating materials. Traditional trial-and-error approaches
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are costly and time-consuming, prompting the use of numerical methods, such as finite element
analysis (FEA), computational fluid dynamics (CFD), and multiphysics tools like ANSYS Fluent and
COMSOL Multiphysics [119-121]. These tools simulate key phenomena, including ion transport,
electric field distribution, current density, temperature gradients, and passive film behaviour. For
instance, models help visualize oxide layer development and dissolution based on pulse regimes,
electrolyte flow, and electrode geometries. This virtual analysis enables researchers to anticipate
material response, fine-tune process parameters, and optimize ECM systems tailored to specific
materials and geometries. Moreover, simulations significantly reduce the need for full-scale experi-
mentation, saving time and cost while improving process reliability. Overall, computational
modelling makes ECM more predictive, controllable, and adaptable, particularly for high-precision,
performance-critical applications.

Machine learning and Al-based optimization for ECM control

Machine learning (ML) and artificial intelligence (Al) are transforming ECM by enabling real-time, data-
driven process control. ECM involves complex, nonlinear interactions among parameters like voltage,
current density, electrolyte chemistry, temperature, and flow rate, all affecting MRR, surface finish, and
oxide behaviour. ML algorithms, neural networks, genetic algorithms, and reinforcement learning analyse
extensive data to uncover patterns beyond traditional methods [122]. These models predict outcomes and
support dynamic parameter control. Al-driven ECM systems self-optimize to reduce passive oxide growth
or enhance surface quality. Multi-objective optimization enables simultaneous improvement in MRR, tool
wear, energy efficiency, and dimensional accuracy. This intelligent control minimizes trial-and-error
testing, shortens development time, cuts costs, and improves flexibility, especially useful when machining
challenging or novel materials [123].

Experimental studies on new materials and coatings

With the rising demand for lightweight, high-strength, and corrosion-resistant materials in the
aerospace, biomedical, and defence sectors, ECM research is increasingly focusing on advanced
materials and coatings. Alloys like titanium aluminides, cobalt-chromium, and ceramic matrix
composites exhibit strong passivation, forming stable oxide layers that hinder ECM [124]. To address
this, researchers explore surface modifications that improve electrochemical machinability.
Conductive polymer films and catalytic surface layers alter electrochemical responses; reduce oxide
formation, and lower interfacial resistance. Additionally, nanostructured and thin conductive coatings
enhance electrical conductivity and ensure uniform current distribution, enabling more controlled
material removal [125]. These innovations enhance the understanding of material electrolyte
interactions and facilitate the precise engineering of complex geometries, thereby advancing their
application in next-generation high-performance materials.

Conclusion

Passive oxide layer formation remains a major challenge in ECM, significantly reducing efficiency,
accuracy, and material removal rates, especially in hard-to-machine, corrosion-resistant materials.
This review synthesized passive film formation mechanisms and analysed control strategies including
electrolyte modification, pulse current application, hybrid ECM, process optimization, and real-time
monitoring. A key finding is the material and condition-dependent nature of oxide disruption.
Pulsed/reverse-pulsed ECM improves surface finish and limits oxide buildup but is sensitive to pulse
parameters and material properties. Electrolyte modifications with de-passivating or complexing
agents enhance dissolution but raise environmental concerns due to the formation of toxic
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byproducts. Hybrid methods (ultrasonic, mechanical, thermal) improve oxide stripping and machining
stability but face complexity, energy, and cost barriers. Real-time adaptive control with Al and sensors
offers precision but is underused due to integration challenges.

Research gaps persist: ECM still relies on trial-and-error and oversimplified models, failing to
capture the dynamics of passive films. Environmental sustainability is a concern, as aggressive
electrolytes like sodium nitrate or chlorate produce hazardous waste. The lack of integrated, smart
ECM platforms limits adaptability and industrial scalability.

Future research should focus on sustainable electrolytes, ionic liquids, deep eutectic solvents,
and biodegradable organics with full electrochemical and lifecycle evaluations. Advancing real-time
monitoring (electrochemical impedance spectroscopy, acoustic emission) combined with machine
learning can enable dynamic passivation control, but requires better sensor integration and noise-
resistant algorithms. Multi-physics simulations that integrate electrochemical kinetics, heat
transfer, fluid flow, and oxide growth will enhance predictive ECM design. Phase-field modelling and
Al-augmented simulations, paired with experimental validation, will enhance understanding of
oxide evolution. Hybrid ECM combining ultrasonic, laser, or plasma assistance offers promise but
demands thorough process and cost analyses.

Overall, disrupting passive oxide layers in ECM requires a multifaceted approach that combines
sustainable practices, smart control, and advanced process design. Interdisciplinary collaboration
across electrochemistry, materials science, engineering, and Al is essential to advance ECM’s
accuracy, versatility, and eco-friendliness for future manufacturing applications.
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