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Abstract 
Electrochemical machining (ECM) is a non-traditional, precision machining process 
involving the removal of material through anodic dissolution. It is commonly utilized for 
machining complex geometries in conductive materials, especially in aerospace, 
biomedical, and automotive sectors. While having numerous benefits, ECM also has a 
major challenge: the development of a passive oxide layer on the surface of the workpiece. 
The formation of this layer depends on various factors, such as workpiece material, 
electrolyte composition, current density, and machining conditions. If not properly 
controlled, it can cause poor surface finish, dimensional errors, and increased energy 
consumption. To counter this problem, several control strategies have been devised that 
play a crucial role in breaking down the passive film. This review critically analyses and 
compares these strategies for inhibiting passive layer growth in ECM. It highlights both 
traditional and established techniques as well as novel developments like hybrid ECM 
methods, AI-driven process optimization, and real-time monitoring systems. The review 
aims to provide a material-specific and application-oriented perspective, highlighting the 
advantages, limitations, and technical viability of each strategy. By integrating findings 
from experimental studies, simulation work, and emerging technologies, this review 
provides a comprehensive resource for researchers and practitioners seeking to enhance 
the reliability, performance, and precision of ECM processes in high-tech manufacturing.  

Keywords 
Material removal; anodic dissolution; material passivation; process parameters; control 
measures 

 

Introduction 

Electrochemical machining (ECM) is a sophisticated and non-conventional machining process 

that utilizes electrolysis to remove material from electrically conductive workpieces immersed in 

electrolyte upon supply of DC current, as shown in Figure 1. In contrast to conventional techniques 

such as milling or drilling, which rely on direct mechanical contact between the tool and the 

workpiece, ECM does not involve physical contact [1]. This contactless machining significantly 
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reduces tool wear and enables the machining of complex shapes and subtle geometries that are 

difficult to achieve with conventional methods. Consequently, ECM has emerged as a method of 

choice in sectors where precision, surface finish and tool life are significant factors, such as 

aerospace, biomedical, automotive, and energy industries [2]. One notable disadvantage of ECM is 

the tendency for a passivation layer to form on the workpiece surface during the dissolution 

process [3]. The passive film thus formed is typically composed of metal oxides and hydroxides, 

resulting from electrochemical reactions in which the tool serves as the cathode, the workpiece as 

the anode, and the electrolyte. This layer acts as an ionic transport barrier, inhibiting the process of 

anodic dissolution during machining. This hinders not only the material removal rate (MRR) but also 

increases electrical resistance, leading to higher energy consumption and lower machining accuracy 

and surface finish [4]. The development and accumulation of this passive film are affected by several 

factors, including the type of material being machined, the composition and pH of the electrolyte, 

the current density, the temperature, and the machining time [5]. Materials such as stainless steel, 

titanium alloys, and nickel superalloys are especially prone to developing recalcitrant oxide layers 

due to their high corrosion resistance and tendency to passivate [6]. If not properly managed, the 

existence of this passive layer will negatively affect dimensional precision, lengthen machining time, 

and lead to inconsistencies in results [7]. To eliminate such problems, a proper understanding of the 

electrochemical mechanisms associated with oxide growth is crucial. Using optimized electrolytes, 

applying pulse power supplies, and using additional techniques like ultrasonic stirring are some ways 

of preventing or disturbing passive layer development. Controlling this effectively is necessary to 

maximize ECM performance, ensure process consistency, and provide the high accuracy demanded 

by modern manufacturing techniques. 

 
Figure 1. Electrochemical machining setup 

Mechanisms of passive oxide layer formation in ECM 

Oxide layer formation and its growth during ECM are significant issues, especially when 

machining materials with high oxygen affinity, such as stainless steels, titanium alloys, and nickel-

based superalloys. These materials tend to form a stable oxide layer on their surface as a corrosion 

protection mechanism in aggressive environments [8]. Although this passivation is desirable in most 
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applications, it becomes undesirable in ECM. The formed oxide film acts as an insulating barrier at 

the electrode-electrolyte interface, inhibiting the anodic dissolution process that is critical for 

effective material removal [9]. As the passive layer grows thicker, it results in a decrease in the MRR, 

enhances the resistance of the electrochemical cell, and leads to greater energy consumption. 

Additionally, the uneven dissolution caused by the presence of a layer affects surface quality and 

dimensional accuracy. A stepwise flowchart illustrating the mechanism of passive layer formation 

and its buildup is shown in Figure 2.  

 
Figure 2. Process flowchart showing the stages of passive layer formation and buildup 

Electrochemical reactions  

At the core of ECM, electrochemical reactions govern material removal, involving an anode (the 

workpiece) and a cathode (the tool) submerged in an electrolyte. However, unwanted side reactions 

contribute to the formation of a passive oxide layer [10]. The fundamental material removal reaction 

is presented in Equation (1). 

M → Mn++ ne- (1) 

where M is the metal, Mn+ is the dissolved metal ion, and ne- represents the number of electrons 

released. During anodic polarization, oxygen evolves from water oxidation as shown in Equation (2): 

2H2O→ O2 + 4H+ + 4e-   (2) 

Oxygen bubbles at the workpiece surface cause localized current density variations, resulting in 

non-uniform machining [11]. 

Formation of metal oxides and hydroxides (passive layer growth) 

Dissolved metal ions react with oxygen or hydroxyl ions, forming oxide/hydroxide layers as 

presented in Equations (3) and (4) for iron-based alloys [12].  

Fe2++ 2OH-→ Fe(OH)2  (3) 

4Fe(OH)2 + O2 + 2H2O → 4Fe(OH)3  (4) 

The Fe(OH)₃ further dehydrates to form Fe2O3 or Fe3O4, contributing to a stable oxide film that 

resists further dissolution. 
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Similarly, as presented in Equations (5) and (6), Ti4+ in titanium alloys reacts with water to form a 

stable TiO2 layer, releasing H+ ions, which indicates oxide film formation and local acidification. Ni2+ 

in nickel alloys reacts with hydroxide ions to form Ni(OH)2, indicating the formation of a hydroxide 

layer.  

Ti4++ 2H2O → TiO2 + 4H+    (5)  

Ni2++ 2OH-→ Ni(OH)2      (6) 

These oxide films hinder ECM efficiency. The mechanism of oxide layer formation during 

electrochemical dissolution of a metal workpiece is illustrated in Figure 3. 

 
Figure 3. Oxide layer formation mechanism 

Influence of workpiece material composition on passive layer formation 

The composition of the workpiece material has a major influence on the properties and stability of 

the passive oxide layer. Various materials exhibit different levels of passivation due to variations in 

their electrochemical reactivity, oxide layer structure, and oxygen affinity, as well as the physical pro-

perties of the oxide films deposited on different metals [13]. For example, stainless steels, which are 

primarily iron-chromium alloys, exhibit high passivation through the formation of a stable chromium 

oxide (Cr2O3) coating, which is highly resistant to dissolution [14]. Additional alloying elements, such 

as molybdenum and nickel, further enhance corrosion resistance and passive layer stability, present-

ing additional challenges in ECM [15]. Titanium and its alloys form a highly stable titanium dioxide 

(TiO2) layer, which is insulating and strongly adherent, significantly impeding anodic dissolution [16]. 

Likewise, nickel-based superalloys such as Inconel and Hastelloy form dense nickel oxide (NiO) and 

nickel hydroxide (Ni(OH)2) layers that are difficult to remove because of strong metal-oxide bond-

ing [17]. These alloys tend to require a suitable electrolytic environment with complexing agents, such 

as EDTA or citric acid, to facilitate oxide breakdown [18]. Aluminium alloys form a chemically resistant 

aluminium oxide (Al2O3) film, requiring fluoride-containing electrolytes for successful oxide dissolu-

tion [19]. However, materials like copper and low-carbon steels do not exhibit much passivation. 

Copper does not form a stable oxide film under normal ECM conditions, whereas low-carbon steels 

form a porous iron oxide layer that does not significantly impede the machining process [20,21].  
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Effect of electrolyte properties on passive film formation 

The electrolyte plays a crucial role in ECM by affecting both passive oxide layer growth and material 

removal efficiency [22]. Its composition determines ion transport, reaction kinetics, and passive film 

behaviour during anodic dissolution. Electrolyte pH is a key factor: acidic solutions (pH < 7), such as 

HCl, H2SO4, and HNO3, promote oxide breakdown via high H+ concentrations, enhancing reactivity and 

dissolution [23]. However, strong acids may cause uncontrolled corrosion, limiting their use in 

precision applications. Neutral electrolytes (pH≈7) such as NaNO3 and NaCl offer controlled dissolution 

with minimal side reactions, making them ideal for maintaining surface integrity [24]. Alkaline 

electrolytes (pH > 7), including NaOH and KOH, promote the formation of stable oxides/ /hydroxides, 

such as Al(OH)3 and Fe2O3, which reduces removal efficiency and surface quality [25]. 

The conductivity of the electrolyte influences ionic mobility and current distribution [26]. High-

conductivity electrolytes, such as NaCl, NaNO3, and H2SO4, enable uniform charge transfer and 

efficient oxide disruption [27]. Low-conductivity solutions, such as distilled water, cause non-

uniform current flow, passive layer buildup, and poor finishes [28]. 

Electrolyte flow rate is equally critical. High flow rates enhance mass transport and clear by-

products from the interelectrode gap [29], reducing passive film formation and improving machining 

consistency. Low flow rates cause by-product accumulation, promoting passivation, uneven 

removal, and reduced accuracy [30]. 

Temperature also impacts ECM. Elevated temperatures increase oxide solubility and dissolution 

rates, benefiting passivation-prone metals [31]. However, excessive heat may degrade tooling, de-

compose the electrolyte, or trigger side reactions, compromising surface quality. Low temperatures 

hinder ion mobility and conductivity, reducing efficiency and raising energy consumption [32]. An 

optimal temperature range of 30 to 60 °C is crucial for maintaining a balance between dissolution, 

passive film disruption, and system stability. 

In summary, achieving high-performance ECM requires careful control of electrolyte pH, 

conductivity, flow rate, and temperature to minimize passive layer formation and maximize material 

removal efficiency. 

Role of process parameters on oxide layer development 

In ECM, the formation and disruption of the passive oxide film are controlled by key machining 

parameters, including voltage, current density, interelectrode gap, flow rate, tool feed, machining time, 

and pulse characteristics. Applied voltage directly impacts the electric field between the tool and 

workpiece, thereby influencing anodic dissolution [33,34]. Low voltages fail to break passive films on 

metals like titanium, while excessive voltages enhance oxidation, stabilizing these films and reducing 

surface finish quality [35]. Thus, maintaining optimal voltage is essential for uniform oxide breakdown. 

Current density influences MRR; moderate levels enhance it, while extremes cause localized 

heating or poor dissolution [36]. The inter-electrode gap affects both the electric field and debris 

flushing. Tight gaps improve dissolution but hinder flushing, promoting oxide accumulation; wider 

gaps lower field strength but improve debris removal [37]. Tool feed rate affects fresh surface 

exposure; inappropriate rates either overload the gap with by-products or limit dissolution time [38]. 

Electrolyte concentration also governs conductivity; higher concentrations improve MRR but may 

trigger side reactions or erosion [39]. 

Pulse parameters in pulsed ECM further influence performance. Short, controlled pulses help 

disrupt oxide layers and renew the electrolyte, whereas continuous DC can risk electrolyte 

degradation and permanent passivation [40]. 
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Oxide formation naturally occurs during anodic reactions, creating a barrier that inhibits further 

dissolution [41]. Without regular disruption, this layer restricts electrolyte contact, reduces MRR, 

and destabilizes the process, especially under high voltage conditions, as illustrated in the graph 

shown in Figure 4. This can cause unstable machining conditions and variable removal rates, 

particularly at higher voltages where the oxide layer tends to grow more rapidly [42,43]. 

 

Figure 4. MRR in ECM with and without oxide disruption 

In ECM, the lack of oxide disruption leads to the buildup of passive films, causing non-uniform 

material removal and surface defects such as pitting and increased roughness [44]. Thicker oxide 

areas resist dissolution, while thinner regions dissolve faster. Under steady DC conditions, uncon-

trolled oxide growth degrades surface finish. Conversely, disruption techniques such as pulsed 

current, ultrasonic agitation or tool vibration enable consistent passive layer breakdown, exposing 

fresh metal uniformly [45]. This results in smoother surfaces and stable dissolution fronts, 

minimizing over-etching and maintaining integrity [46]. Research shows that with oxide disruption; 

the surface roughness decreases consistently as voltage increases. Figure 5 illustrates this, 

comparing surface quality at different voltages with and without disruption, underscoring the 

importance of oxide control in optimizing ECM performance [47,48]. 

 
Figure 5. Surface roughness in ECM with and without oxide disruption 

Given the persistent challenges of passive oxide layer formation in ECM, this review presents a 

focused and comparative analysis of control strategies specifically designed to address this issue. 
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Unlike broader reviews, it focuses on the mechanisms, impacts, and suppression methods of passive 

film formation across various materials and machining conditions. Five core strategies are 

examined: electrolyte modification, pulsed/reverse-pulsed ECM, hybrid techniques, process 

parameter optimization, and real-time adaptive control systems, including AI-based methods. Each 

is discussed from a material-specific standpoint with quantitative metrics such as MRR, surface 

roughness, and oxide thickness. Reported improvements include MRR increases up to 45 %, surface 

roughness reductions by 30 to 60 %, and oxide thickness decreases by several micrometres under 

optimized conditions [49,50]. The review also highlights the role of advanced computational tools 

and real-time monitoring technologies in enhancing accuracy and process reliability. This synthesis 

bridges experimental, simulation, and application-based research, offering a comprehensive 

reference for improving ECM’s industrial viability. 

Literature review on control strategies for passive oxide layer disruption 

The literature provides insights into controlling passive oxide layers in ECM by understanding 

material electrochemistry and electrolyte chemistry. Although beneficial in its natural state, the 

oxide layer hinders anodic dissolution in ECM. Various strategies have been explored to weaken or 

eliminate it for uniform material removal [51]. A schematic illustrating the effects of these strategies 

on oxide formation is shown in Figure 6. 

 
Figure 6. Control strategies impacting the passive oxide layer disruption 

Electrolyte selection and modification 

Electrolyte selection plays a pivotal role in ECM performance, impacting dissolution efficiency, 

surface finish, and compatibility with workpiece materials. Common choices include sodium 

chloride (NaCl) and sodium nitrate (NaNO3), favoured for their conductivity and ability to interact 

with passive oxide films [52,53]. NaCl, rich in Cl- ions, effectively disrupts oxide layers like Cr2O3 and 

TiO2, making it suitable for stainless steel and titanium alloys by forming soluble metal-chloride 

complexes [54,55]. NaNO3, being less aggressive, offers electrochemical stability and is better suited 

for moderately passivating materials, though it may require enhancement for more resistant 

substrates. Additives such as chelating agents or oxidizers are often introduced to improve passive 

film breakdown [56]. Moreover, inhibitors help to control electrochemical conditions and prevent 

unwanted side reactions, contributing to stable operation. Thus, tailoring electrolyte composition, 

including additives and inhibitors, is essential to balance aggressiveness, conductivity, and process 

control for optimal ECM results. This strategy is presented with a material-specific perspective, 

highlighting how different electrolytes interact with varying levels of material passivation. For 
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instance, NaCl proves highly effective for stainless steel and titanium alloys, while a mixed ethylene 

glycol NaCl electrolyte enhances surface integrity in Cu-based shape memory alloys. The perfor-

mance is substantiated through quantitative measures such as MRR (0.323 mg min-1), surface rough-

ness (0.384 µm), and reduction in oxide thickness, which contributes to more stable and uniform 

anodic dissolution [57]. Studies have shown that optimized electrolytes can reduce oxide film 

thickness by several micrometres, improving machining consistency and dimensional accuracy [58]. 

Chelating agents such as ethylenediaminetetraacetic acid (EDTA), citric acid, and oxalic acid are 

widely used in ECM to form stable metal-ion complexes, facilitating oxide layer dissolution and 

improving surface finish and machining uniformity [59]. Surfactants enhance electrolyte wetting and 

lower surface tension, aiding in debris and oxide removal from the machining gap [60,61], which 

stabilizes current density and reduces localized heating. De-passivating ions like fluoride or chloride 

actively dissolve passive films, particularly on TiO2 and Al2O3 surfaces, by forming soluble complexes 

[62]. Inhibitors are added to prevent localized corrosion and unwanted side reactions, maintaining 

electrolyte stability. Optimized additive combinations enhance material removal, precision, and 

surface quality. Maintaining stable pH is equally crucial, as anodic reactions and gas evolution cause 

local pH fluctuations [63,64]. Buffer systems such as phosphate, borate, or citrate regulate pH within 

the optimal range (6 to 8) [65], with phosphate buffers being especially effective. pH control is 

critical in micro-ECM and with highly passivating materials [66]. 

Pulsed and reverse-pulsed ECM 

Pulsed and reverse-pulsed ECM are advanced methods developed to mitigate passive oxide film 

formation, which obstructs material removal during machining [67]. Continuous DC ECM promotes 

stable oxide growth, reducing efficiency and accuracy. Pulsed ECM improves performance by 

introducing on-time and off-time intervals, allowing electrolyte replenishment, heat dissipation, and 

oxide dissolution through localized effects [68]. This enhances anodic dissolution and ion transport 

in the machining gap. Reverse-pulsed ECM further improves results by momentarily reversing 

polarity, creating cathodic conditions that destabilize oxide layers like Cr2O3 and TiO2 on stainless 

steel and titanium, respectively [69,70]. These techniques improve surface finish, MRR, and 

dimensional accuracy, especially in passivating or hard-to-machine materials [71]. 

Pulse duration and frequency are critical. Short pulses deliver intense current bursts that disrupt 

oxide films before they stabilize, enhancing MRR and avoiding persistent passivation seen in DC 

ECM [72,73]. In contrast, long pulses or insufficient off-time can lead to electrolyte depletion and 

oxide reformation, reducing performance [74]. Although low-frequency pulsing may increase MRR, it 

can also trigger passivation if not properly managed [75]. Therefore, optimizing pulse parameters is 

essential for achieving efficient and consistent ECM results across different materials. This strategy is 

evaluated from a material-specific perspective, particularly for difficult-to-machine and highly 

passivating materials, such as Inconel 625 and titanium alloys [76]. Quantitative improvements in 

process performance have been validated through measurable parameters, including an increase in 

MRR (up to 3.1587 mg min-1), a reduction in radial overcut (71.96 µm), and an enhancement in surface 

finish. Although direct data on oxide thickness reduction is limited, the improved dissolution 

behaviour under optimized pulse conditions strongly indicates effective passive layer disruption. 

These results confirm the suitability of pulse control for precise and efficient ECM across a wide range 

of materials [77]. 
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Process parameter optimization 

Optimizing ECM parameters is essential for minimizing passive layer formation, enhancing MRR, 

and achieving high precision machining of complex, hard-to-machine materials. Applied voltage 

significantly influences electrochemical reaction rates; appropriate control prevents thermal 

instability and abnormal oxide growth, while fluctuations affect dimensional accuracy and surface 

finish [78]. The interelectrode gap plays a crucial role in electric field distribution and electrolyte 

flow. A balanced gap avoids arcing or voltage loss, maintaining uniform current and minimizing oxide 

buildup [79]. The electrolyte flow rate governs the removal of metal ions and by-products; a higher 

flow rate reduces passivation and maintains chemical stability [80]. Electrolyte concentration affects 

conductivity and dissolution kinetics, where optimal levels promote efficient ion transport without 

causing passivation or erosion. These parameter optimizations have demonstrated improved 

machining outcomes, higher MRR, better surface finish, and oxide disruption in materials like 

Inconel 625 and Nimonic-263. Electrolyte concentration and pulse frequency significantly affect 

surface roughness and roundness error, achieving minimum roughness and roundness error values. 

Findings of this study on micro-ECM of Inconel 625 underscore the vital role of optimized electrolyte 

conditions in enhancing surface quality during micro-machining of nickel-based superalloys [81]. The 

tool feed rate must be synchronized with the material removal rate. Too rapid feed rate will result 

in poor machining or tool-workpiece contact, while too low of a rate introduces passive layer build-

up [82]. Simulation and experimental research on the micro ECM of Nimonic-263 superalloy showed 

that the process parameters, such as applied voltage, tool feed rate, and tool material, significantly 

affect MRR and surface roughness. The use of copper and SS304 electrodes with varying conduc-

tivity affected electrolyte characteristics and electric field distribution, validated through COMSOL 

simulations. These results show the significance of optimizing electrochemical conditions and tool-

electrolyte interactions to improve surface integrity in precision machining [83]. 

Hybrid machining approaches 

Hybrid machining methods have developed as an effective means to overcome the limitations of 

conventional ECM, particularly in terms of passive layer disturbance. Ultrasonic-assisted ECM (UA-ECM) 

introduces high-frequency mechanical vibrations into the electrolyte, enhancing turbulence and 

disrupting passive film formation. Experiments have proved that ultrasonic assistance improves material 

removal rates, particularly in challenging-to-machine alloys [84]. Laser-aided ECM (LA-ECM) is another 

novel hybrid method which utilizes local heating to stress the passive oxide layer before electrochemical 

dissolution [85]. This method was found to be highly effective for machining ceramics and other non-

metallic conductive materials that are prone to rapid passivation. Studies have shown that the use of 

ECM with mechanical micro-abrasion or brushing, which involves motion-controlled motion, still 

enhances passive layer disruption, leading to more consistent material removal [86]. These findings 

emphasize how hybridization can optimize ECM performance based on the specific characteristics of the 

workpiece material. 

Real-time monitoring and adaptive control systems 

The complexity associated with the ECM process has necessitated the use of real-time monitoring 

systems to dynamically modify machining parameters and prevent passive layer effects. Electroche-

mical impedance spectroscopy (EIS) is the most widely utilized method for observing passive layer 

creation in real-time, with simultaneous corrective measures undertaken in real-time [87]. The use of 

AI and ML algorithms is also being investigated for predicting the response of the passive oxide layer 

and modifying the ECM settings to the optimal value. These advances have led to adaptive ECM 
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systems that automatically control electrolyte composition, pulse parameters, and machining con-

ditions using real-time data [88]. Quantitative improvements in MRR, surface finish, and process 

stability have been reported where AI-driven adjustments dynamically respond to oxide layer for-

mation. Real-time EIS feedback and sensor data help to regulate oxide thickness, ensuring consistent 

dissolution and enhanced machining precision. These advancements underline the potential of intel-

ligent systems in tailoring ECM processes to specific material responses. On top of that, internet of 

things (IoT) enabled sensors to have also been integrated into ECM setups, transmitting process infor-

mation to cloud-based systems for predictive maintenance and performance enhancement [89]. 

Material-dependent factors and computational modelling 

The relationship between the electrolyte chemistry and workpiece material properties is vital to ECM 

performance. Different materials passivate at varying rates, so it is essential to design specialised 

electrolytes to ensure maximum machining efficiency. For instance, stainless steels and titanium alloys, 

which are commonly used in aerospace and biomedical fields, have a high tendency to form a passive 

layer due to their affinity with oxygen [90]. In such cases, certain electrolytes containing complexing 

agents or active de-passivators need to be employed to ensure uniform material dissolution. Advance-

ments in computational simulation and modelling have provided deeper insight into the behaviour and 

control mechanisms of passive oxide layers. Finite element analysis (FEA), computational fluid dynamics 

(CFD), and multi-physics simulations have been extensively used to predict passive layer growth, ion 

transport dynamics, and electrolyte flow patterns in ECM [91,92]. These predictive models enable 

researchers to design the optimal process parameters and electrolyte composition before conducting 

actual experimental trials, thereby saving considerable time and expense in process development. The 

literature highlights several control strategies for controlling passive oxide layer formation in ECM, each 

with specific strengths and limitations based on material type, machining conditions, and precision 

requirements. Electrolyte modification is a cost-effective method for chemically controlling oxide 

stability, but it may require the addition of additives or high flow rates to passivate materials. Pulsed and 

reverse-pulsed ECM dynamically disrupt oxide layers and enhance thermal regulation, improving MRR 

and surface finish, especially effective for titanium and nickel alloys, though requiring careful pulse 

parameter tuning. Hybrid methods like ultrasonic- or laser-assisted ECM enable mechanical or thermal 

oxide breakdown and are effective for high-strength materials, but involve higher cost and complexity, 

limiting them to specialized sectors. Optimizing parameters such as voltage, gap, and flow rate provides 

scalable efficiency gains but demands process stability and testing. Adaptive systems with real-time 

monitoring offer precise oxide control via AI or sensors but are expensive. Combining these strategies 

can achieve superior ECM outcomes across applications. 

Comparative analysis of control strategies 

Comparison of MRR across control strategies in ECM 

The comparative bar graph shown in Figure 7 demonstrates the MRR attained through various 

advanced control approaches in ECM [93-96]. Such approaches have been investigated extensively 

in earlier research to optimize machining performance, especially MRR, which continues to be an 

important measure of process efficiency. 

Electrolyte composition significantly affects MRR in ECM by enhancing ion transport through 

optimized conductivity, viscosity, and chemical stability. Pulsed and reverse-pulsed ECM prevents 

passive film formation, improving MRR and dimensional accuracy.  
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Figure 7. Comparison of MRR across control strategies in ECM 

Optimized parameters, such as voltage, current density, interelectrode gap, and flow rate, further 

enhance dissolution while reducing stray corrosion. Hybrid ECM techniques, such as those utilising 

ultrasonic or laser assistance, enhance material removal.  

Real-time monitoring with adaptive control dynamically adjusts parameters for consistent, high 

MRR. Material-specific strategies supported by computational modelling enable precision machining 

of complex alloys, prioritizing accuracy. These integrated approaches collectively aim to maximize 

ECM performance and machining efficiency.  

Comparison of surface roughness and overcut across control strategies in ECM 

The comparative bar graph illustrated in Figure 8 depicts the effect of different control strategies 

applied in ECM on two prime quality parameters: surface roughness and overcut [97-100].  

 
Figure 8. Comparison of surface finish and overcut across control strategies in ECM 

Both parameters directly control the dimensional accuracy and surface integrity of machined 

parts and have been extensively explored to maximize ECM performance. 
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Electrolyte selection affects surface finish by improving ion dissolution and flushing, moderately 

enhancing quality and slightly reducing overcut. Pulsed and reverse-pulsed ECM significantly lowers 

surface roughness and overcut by minimizing heat and passive layer formation. Optimizing para-

meters like interelectrode gap, current density, and flow rate stabilizes the electrochemical zone and 

improves uniformity. Hybrid strategies, such as ultrasonic-assisted ECM, enhance circulation and ma-

terial removal for better finishes. Real-time monitoring and adaptive control dynamically optimize 

conditions, achieving minimal overcut. Material-specific strategies with computational modelling furt-

her improve precision, emphasizing advanced control methods for high-accuracy ECM performance.  

Effectiveness of various approaches for different materials 

The effectiveness of control strategies in ECM depends on the electrochemical and physical 

properties of workpiece materials. As shown in Table 1, material-specific characteristics significantly 

influence strategy selection and performance [101-103].  

Table 1. Comparison of ECM control strategies based on workpiece material characteristics 

Control strategy Stainless steel Titanium alloys 
Nickel-based 
superalloys 

Aluminium/ 
/Magnesium 

Copper/ 
/low-carbon steel 

Electrolyte selection 
& modification 

High (with Cl⁻ 
additives) 

Moderate 
(requires 

aggressive 
electrolytes) 

Moderate 
(needs 

chelating 
agents) 

High (fluoride-
based 

effective) 

Sufficient 
(standard 

NaCl/NaNO₃ 
works well) 

Pulsed & reverse-
pulsed ECM 

Very effective in 
reducing oxide 

regrowth 

Effective, but 
oxide breakdown 

is challenging 
Moderate 

Highly 
effective 

Not essential, but 
improves surface 

finish 

Process parameter 
optimization 

Improves 
efficiency & 

MRR 

Limited by 
passive film 
resilience 

Requires tight 
control 

Very effective Highly effective 

Hybrid machining 
(ECM ultrasonics/ 
/laser/mechanical) 

Effective for 
intricate 
features 

Highly effective 
Highly 

effective 
Moderate Rarely needed 

Real-time monitoring 
& adaptive control 

Excellent for 
precision 

machining 

Crucial due to 
variable oxide 

stability 

Essential for 
consistency 

Useful for 
micro-ECM 

Optional 

Material specific 
considerations 

Requires de-
passivation 

agents 

Demands 
aggressive 
conditions 

Needs 
complexing 
electrolytes 

Fluoride 
essential 

Minimal concern 

Computational 
modelling 

Predicts oxide 
dynamics well 

Helps optimize 
electrolytes 

Useful in ele-
ctrolyte-agent 

interaction 

Beneficial for 
film evolution 

Simple modelling 
sufficient 

 

Stainless steel and aluminium/magnesium alloys rapidly form passive films, requiring chloride or 

fluoride-based electrolytes to destabilize oxides and maintain conductivity. Titanium and nickel-

based superalloys form highly stable oxides, which require aggressive electrolytes, such as chelating 

agents or advanced methods like pulsed/reverse-pulsed ECM, to periodically disrupt passive layers 

and improve removal without thermal damage. Hybrid machining methods enhance oxide 

disruption via localized energy or mechanical stirring, benefiting hard-to-machine, chemically stable 

alloys with low dissolution rates. Real-time and adaptive control systems address process 

instabilities in reactive alloys by dynamically adjusting parameters to maintain optimal conditions. 

Computational modelling aids in predicting oxide behaviour, electrolyte interaction, and material 
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response, supporting efficient control algorithm development and virtual optimization for complex, 

passivation-sensitive alloys. Thus, ECM control strategies remain highly material dependent. 

Cost-benefit analysis of implementing control measures  

Control strategies in ECM must be evaluated for both technical effectiveness and economic 

viability. Table 2 outlines cost-benefit trade-offs involving investment, operational expenses, and 

efficiency gains [104-106]. Electrolyte selection/modification involves low-to-medium initial costs and 

moderate operating expenses, offering cost-effective performance in most applications. Pulsed and 

reverse-pulsed ECM techniques incur moderate equipment/control costs but provide high precision 

and oxide breakdown efficiency, justifying use in aerospace and medical sectors. Process parameter 

optimization, like voltage, temperature, and electrolyte flow, offers high ROI due to low cost and 

simplicity, with moderate performance gains, making it ideal for standard setups. Hybrid techniques 

(e.g. ECM with ultrasonic/laser assistance) yield high efficiency for hard-to-machine or valuable 

materials but are reserved for niche, high-cost applications. Real-time monitoring and adaptive 

systems demand high initial investment yet enhance precision and consistency in automated or high-

precision environments. Computational modelling, despite moderate setup costs, provides long-term 

R&D benefits by enabling process design and minimizing experimental iterations. 

Table 2. Cost justifications and efficiency gains of advanced control measures in electrochemical machining 

Control strategy Initial investment Operational cost Efficiency gain Cost justification 

Electrolyte selection & 
modification 

Low to medium Medium 
Moderate to 

high 
Cost-effective for most 

applications 

Pulsed & reverse-pulsed 
ECM 

Medium Medium High 
Justified in aerospace, 

medical sectors 

Process parameter 
optimization 

Low Low Moderate High ROI due to simplicity 

Hybrid machining  
(ECM ultrasonics/ 
/laser/mechanical) 

Low High Very high 
Justified only in high-va-
lue or complex materials 

Real-time monitoring & 
adaptive control 

High Medium to high High 
Best suited for high 

precision or automated 
environments 

Computational 
modelling 

Medium 
Low (simulation 

cost) 
Indirect (design 
optimization) 

Long-term benefit, 
especially in R&D setups 

Industry-specific adoption and practical feasibility 

The effectiveness of ECM control strategies differs by industry due to variations in materials, 

precision, production volume, and cost constraints. Table 3 summarizes industry-specific priori-

ties [107,108]. Aerospace requires high accuracy for heat-resistant alloys, employing pulsed ECM, 

hybrid techniques, adaptive control, and simulation to achieve dimensional precision and manage 

oxide layers. Automotive sectors focus on cost effectiveness, preferring optimized electrolytes and 

tenable parameters for efficient, economical machining. Biomedical fields need precise, contami-

nation-free machining; hence, pulsed ECM, reactive electrolytes, and real-time monitoring are 

favoured for implants and tools. Defence applications adopt hybrid ECM and AI-driven optimization 

to meet diverse machining demands with moderate-to-high feasibility. The tool and die industries 

typically use basic ECM setups with minimal control strategies, due to the simpler shapes and cost 

considerations. For electronics and MEMS, micro-ECM with tight control and modelling ensures the 

production of intricate, miniaturized components, supporting both precision and high repeatability. 
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Table 3. Industry-wise preferred control strategies and feasibility 

Industry Preferred control strategies Feasibility 

Aerospace 
Pulsed ECM, hybrid machining, adaptive 

control, computational modelling 
High (due to need for precision 
and hard-to-machine materials) 

Automotive 
Electrolyte selection, parameter 

optimization 
High (focus on cost-efficiency and 

throughput) 

Biomedical 
Pulsed ECM, real-time monitoring, 

aggressive electrolytes 
High (tight tolerances, 

biocompatible materials) 

Defence 
Hybrid ECM, real-time systems, AI based 

optimization 
Moderate to high (for advanced 

materials) 

Tool & die 
manufacturing 

Standard ECM with optimized parameters 
and electrolyte choice 

High (low complexity, cost-
sensitive applications) 

Electronics/MEMS 
Micro ECM with precise parameter control 

and computational modelling 
High (for feature miniaturization 

and repeatability) 
 

The comparative analysis shows that while electrolyte modification, pulse control, hybridization, 

optimization, and monitoring offer distinct benefits, their effectiveness depends on materials and 

conditions [109,110]. No single method suffices; instead, tailored combinations enable optimal ECM 

performance and guide future research, as detailed in the concluding section. 

Research progresses on control strategies for disrupting passive oxide layer formation 

ECM has made significant advancements over the past few years, with the need to machine hard-

to-cut and intricate materials more accurately and efficiently. Among the major problems in ECM, one 

of the long-standing issues is the formation of passive oxide films on workpiece surfaces, which 

restricts anodic dissolution and reduces machining performance. Current research has focused on 

developing new methods and technologies to defeat this challenge and improve ECM efficiency. 

Novel electrolyte compositions for enhanced ECM performance  

Advancements in ECM focus on developing novel electrolytes to enhance efficiency and surface 

finish, particularly for high-passivation materials. Standard electrolytes, such as NaNO3 and NaCl, offer 

conductivity but struggle to dissolve stable oxide layers [111]. Reducing agents are added to break 

down or prevent passive film formation, enabling continuous anodic dissolution [112]. Some of the 

most used are gold nanoparticles (AuNPs), which are particularly useful in improving the electroche-

mical machining characteristics of 20MnCr5 steel alloy [113]. Copper ions (Cu2+ ions) facilitate the low-

valence dissolution of metal atoms in iron-based alloys and prevent the accumulation of dissolution 

by-products, such as metal hydroxides and gas bubbles, near the tool cathode [114]. Besides these 

reducing agents, chelating agents such as EDTA, citric acid, and oxalic acid have been proven use-

ful [115,116]. They become bound to the metal ions through the development of soluble complexes 

that compromise the integrity of passive layers; therefore, they are especially suitable for difficult 

materials such as nickel-based superalloys and copper alloys, where passivation greatly hinders ECM 

efficiency. Oxidizing agents such as potassium dichromate (K2Cr2O7) and hydrogen peroxide (H2O2) are 

also utilized in ECM environments where the degradation rate of oxides needs to be achieved quickly. 

These agents enhance the dissolution of metal oxides by adding more oxidative capacity, increasing 

the rate of reaction and supporting a more vigorous attack on the passive film [117,118]. 

Computational modelling and simulation of oxide layer behaviour 

Computational modelling and simulation are essential for understanding oxide layer formation 

and growth during ECM, especially for passivating materials. Traditional trial-and-error approaches 
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are costly and time-consuming, prompting the use of numerical methods, such as finite element 

analysis (FEA), computational fluid dynamics (CFD), and multiphysics tools like ANSYS Fluent and 

COMSOL Multiphysics [119-121]. These tools simulate key phenomena, including ion transport, 

electric field distribution, current density, temperature gradients, and passive film behaviour. For 

instance, models help visualize oxide layer development and dissolution based on pulse regimes, 

electrolyte flow, and electrode geometries. This virtual analysis enables researchers to anticipate 

material response, fine-tune process parameters, and optimize ECM systems tailored to specific 

materials and geometries. Moreover, simulations significantly reduce the need for full-scale experi-

mentation, saving time and cost while improving process reliability. Overall, computational 

modelling makes ECM more predictive, controllable, and adaptable, particularly for high-precision, 

performance-critical applications. 

Machine learning and AI-based optimization for ECM control 

Machine learning (ML) and artificial intelligence (AI) are transforming ECM by enabling real-time, data-

driven process control. ECM involves complex, nonlinear interactions among parameters like voltage, 

current density, electrolyte chemistry, temperature, and flow rate, all affecting MRR, surface finish, and 

oxide behaviour. ML algorithms, neural networks, genetic algorithms, and reinforcement learning analyse 

extensive data to uncover patterns beyond traditional methods [122]. These models predict outcomes and 

support dynamic parameter control. AI-driven ECM systems self-optimize to reduce passive oxide growth 

or enhance surface quality. Multi-objective optimization enables simultaneous improvement in MRR, tool 

wear, energy efficiency, and dimensional accuracy. This intelligent control minimizes trial-and-error 

testing, shortens development time, cuts costs, and improves flexibility, especially useful when machining 

challenging or novel materials [123]. 

Experimental studies on new materials and coatings 

With the rising demand for lightweight, high-strength, and corrosion-resistant materials in the 

aerospace, biomedical, and defence sectors, ECM research is increasingly focusing on advanced 

materials and coatings. Alloys like titanium aluminides, cobalt-chromium, and ceramic matrix 

composites exhibit strong passivation, forming stable oxide layers that hinder ECM [124]. To address 

this, researchers explore surface modifications that improve electrochemical machinability. 

Conductive polymer films and catalytic surface layers alter electrochemical responses; reduce oxide 

formation, and lower interfacial resistance. Additionally, nanostructured and thin conductive coatings 

enhance electrical conductivity and ensure uniform current distribution, enabling more controlled 

material removal [125]. These innovations enhance the understanding of material electrolyte 

interactions and facilitate the precise engineering of complex geometries, thereby advancing their 

application in next-generation high-performance materials. 

Conclusion 

Passive oxide layer formation remains a major challenge in ECM, significantly reducing efficiency, 

accuracy, and material removal rates, especially in hard-to-machine, corrosion-resistant materials. 

This review synthesized passive film formation mechanisms and analysed control strategies including 

electrolyte modification, pulse current application, hybrid ECM, process optimization, and real-time 

monitoring. A key finding is the material and condition-dependent nature of oxide disruption. 

Pulsed/reverse-pulsed ECM improves surface finish and limits oxide buildup but is sensitive to pulse 

parameters and material properties. Electrolyte modifications with de-passivating or complexing 

agents enhance dissolution but raise environmental concerns due to the formation of toxic 
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byproducts. Hybrid methods (ultrasonic, mechanical, thermal) improve oxide stripping and machining 

stability but face complexity, energy, and cost barriers. Real-time adaptive control with AI and sensors 

offers precision but is underused due to integration challenges. 

Research gaps persist: ECM still relies on trial-and-error and oversimplified models, failing to 

capture the dynamics of passive films. Environmental sustainability is a concern, as aggressive 

electrolytes like sodium nitrate or chlorate produce hazardous waste. The lack of integrated, smart 

ECM platforms limits adaptability and industrial scalability. 

Future research should focus on sustainable electrolytes, ionic liquids, deep eutectic solvents, 

and biodegradable organics with full electrochemical and lifecycle evaluations. Advancing real-time 

monitoring (electrochemical impedance spectroscopy, acoustic emission) combined with machine 

learning can enable dynamic passivation control, but requires better sensor integration and noise-

resistant algorithms. Multi-physics simulations that integrate electrochemical kinetics, heat 

transfer, fluid flow, and oxide growth will enhance predictive ECM design. Phase-field modelling and 

AI-augmented simulations, paired with experimental validation, will enhance understanding of 

oxide evolution. Hybrid ECM combining ultrasonic, laser, or plasma assistance offers promise but 

demands thorough process and cost analyses. 

Overall, disrupting passive oxide layers in ECM requires a multifaceted approach that combines 

sustainable practices, smart control, and advanced process design. Interdisciplinary collaboration 

across electrochemistry, materials science, engineering, and AI is essential to advance ECM’s 

accuracy, versatility, and eco-friendliness for future manufacturing applications. 
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