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Abstract 
One of the theoretical requirements of electrochemical impedance spectroscopy measure-
ments is that the studied system should not vary with time. Unfortunately, this is rarely the 
case of physical systems. In the literature, quite a few methods exist to check and correct a 
posteriori the effect of time-variance, allowing the use of conventional equivalent circuit 
models to fit and interpret the data. We suggest a different approach where, for a given 
electrochemical mechanism and specific experimental conditions, assuming stationarity 
during each measurement, a time- and frequency-dependent expression of the Faradaic 
impedance is derived from the kinetic equations. The case of a potential relaxation at zero 
current following an anodic steady-state polarization is considered for a system where a 
Volmer-Heyrovský corrosion mechanism is supposed to take place. 

Keywords 
EIS; adsorption; non-stationarity; Faradaic; relaxation; potential decay 

 

Introduction 

Electrochemical impedance spectroscopy (EIS) consists of studying the frequency response of an 

electrochemical system submitted to an electrical modulation, leading to the determination of its 

transfer function, the involved electrochemical reaction mechanisms and the values of the 

associated parameters.  

Classically, the Faradaic impedance of a given electrochemical reaction is obtained by linearizing 

the expression of the Faradaic current using a Taylor series limited to the first order in the 

neighbourhood of a stationary operating point [1]. 

This means that the electrical perturbation applied to the system where the given electro-

chemical reaction takes place should not entail a nonlinear response. 

This also means that the system should be stationary. As already noted elsewhere [2,3], it is 

considered by the authors that stationarity includes two sub-notions, namely steady-state and time-
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invariance. Steady-state is the state of a system whose response has reached a permanent regime 

and time-invariance is the state of a system whose parameters do not change with time. 

A complete description, or at least a study, of an electrochemical reaction mechanism requires 

impedance measurements performed at various stationary points along the stationary I vs. E curve. 

This is generally performed by collecting impedance data after the system has settled at a constant 

potential.  

However, in some systems, the waiting time to reach the stationary state can be considered too 

long, for example, in the case of an insertion battery or a corroding sample. Besides, strictly 

speaking, no stationary state can really be defined for those systems as the voltage measured across 

a battery and the mixed potential measured on a corroding electrode are not equilibrium 

thermodynamic potentials, so the stationary approach is not deemed relevant.  

A third example is given by Harrington et al. [4] in the case of methanol oxidation, whose 

irreversible adsorption reaction leads to a full-coverage state, whichever the applied potential. 

In such cases, there is no other way than to perform impedance measurements in non-stationary 

conditions, which goes against the requirement mentioned above unless some precautions, 

assumptions and corrections are taken and applied. 

Stoynov et al. [5] were the first to knowingly perform EIS measurements on a time-variant 

system, namely a lead-acid battery under discharge. By choosing a low enough current and keeping 

the measurement time short, it was assumed that the system would not change very much during 

the measurement and was considered to be in a quasi-stationary state (QSS). 

This is also the approach chosen by researchers combining voltammetry and EIS in techniques 

such as potentiodynamic DEIS [6], ac voltammetry [4,7] and dynamic EIS [8-11]. 

The QSS or “frozen-state” assumption allows to use, at each frequency, conventional equivalent 

circuit models (ECM) and Faradaic impedance expressions to interpret the data, but the values of 

the parameters could differ from one frequency to another. 

Stoynov was, to our knowledge, the first to simulate how non-stationarity can deform impedance 

Nyquist diagrams and lead to wrong interpretations [12]. Stoynov et al. introduced an elegant 

correction method named 4D impedance based on the cubic spline interpolation of successive 

measurements, allowing for a reconstruction of instantaneous impedance spectra, which can then 

be interpreted using conventional ECM with time-independent parameters [13,14]. More recently, 

the same authors introduced the rotating Fourier transform [15,16] to directly analyze non-

stationary impedance measurements without the need for correction. 

Belgian researchers developed a methodology using odd multisine signals (Odd random phase 

multisine EIS (ORP-EIS)) to quantify the non-linearity and non-stationarity of nonlinear time-varying 

systems [17,18]. Non-linearities appear as additional signals at non-excited frequencies and time-

variance appears as “jumps” or “skirts” at excited frequencies. 

The different types of Fourier spectra of the response to sinusoidal excitation are presented in 

the white paper “Systems and EIS quality indicators” [19]. Non-linearity and non-stationarity 

indicators are also presented. 

This non-exhaustive review gives an idea of the various approaches used to tackle the problem 

of non-stationarity. Other approaches and more details can be found in two recent review articles 

by Hallemans et al. [20] and Szekeres et al. [21]. 

These approaches all rely on a mathematical treatment of the EIS measurement, using the point 

of view of the physicist or the signal analyst. The point of view of the electrochemist was adopted 
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here, starting from the electrochemical reaction and the kinetic equations to the calculation of a 

time and frequency-dependent Faradaic impedance expression. 

The first attempt originated from a paper by the team of Srinivasan Ramanathan, who illustrated 

the effect of time-variance by performing impedance measurements on a rotating disk electrode 

(RDE) immersed in an electrolyte containing equimolar concentrations of the classical ferri- and 

ferro cyanide ions and being diluted [22]. In our recent paper [2], the time and frequency-dependent 

Faradaic impedance expression was calculated for such a redox reaction where the concentration 

changes with time and showed that it was possible to use this expression to fit experimental 

impedance data obtained on the time-variant system directly. 

The topic of linear systems with variable parameters was also studied by Berthier [23], who 

recalled that the main issue is that, unless the system is simple, there is no mathematical method 

available to solve the differential Equation (1) describing the system, which is: 

an(t)yn(t) + an-1(t)yn-1(t) +  + a1(t)y’(t) + a0(t)y(t) = bm(t)um(t) +  b0(t)u(t) (1) 

where yn(t) represents the nth time derivative of the function y(t), um(t) represents the mth time 

derivative of the function u(t), y(t) is the time response of the considered system and u(t) the time 

input with a(t) and b(t) their respective time-dependent coefficients. 

Baddi [24] tried to explain the passivation mechanism of iron in an acidic medium as well as the 

time evolution of the potential during depassivation, also named the Flade experiment. In this expe-

riment, a constant stationary passivation current or potential is applied to the system, the current 

is then shut and the potential returns to its equilibrium value. This potential time evolution is 

calculated by using the various kinetic equations derived from the chosen depassivation mechanism. 

The non-stationary impedance expression is written using the stationary, voltage-dependent 

impedance expression and replacing the stationary voltage with the time-dependent voltage. 

Harrington [25] calculated open-circuit potential decay transients following the interruption of a 

polarizing current for a three-step hydrogen evolution reaction (HER) and related to the evolution 

of the surface coverage rate of the adsorbed species. 

In this paper, we chose to follow a similar approach using as a case study the Volmer-Heyrovský 

corrosion reaction [26-28, and references therein]. This first part shows the theoretical derivation, 

while the second part, to be published, will present experimental data. 

Mechanism and kinetic equations  

The notation and the equations of the Handbook of Electrochemical Impedance Spectroscopy 

Corrosion Reactions Library [29] were used. 

Each reaction is considered non-inversible or irreversible, meaning the forward reaction rate is 

much larger than the backward reaction rate. 

The two-step hydrogen reduction reaction is considered, Equations (2) and (3): 

r1H + s + e H,s
K+ − ⎯→  (2) 

r2

2
H + H,s + e H + s

K+ −

⎯⎯→  (3) 

with s an adsorption site, Kr1 in s-1 and Kr2 in s-1 the reaction rate constants. H,s denotes an adsorbed 

H atom (or H adatom). 

The oxidation reaction is the corrosion of the metal atom at the surface of the electrode M.s, 

which produces, in our case, for the sake of simplicity, a divalent species M2+ (Equation (4)): 

3 2M,s M +s+2eoK + −⎯⎯→  (4) 
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with Ko3 / s-1 the reaction rate constant. 

M,s and s are considered to be equivalent, which means the oxidation reaction does not lead to 

a variation in surface concentration of the adsorption sites. 

The Langmuir isotherm is used, which means that there are no interactions between the 

adsorbed species, which are assumed to form an ideal condensed phase. 

There is no mass transport limitation, which means that interfacial concentrations H+(0,t) are equal 

to bulk concentrations H+*, or that interfacial concentration variations are negligible, Equation (5): 

H+(0,t)  H+* (5) 

This allows us to write Equations (6) to (8): 

( ) ( )( ) *
r1 r1 r1 N r1 r1exp - , 'K t k f E t k k H+= =  (6) 

( ) ( )( ) *
r2 r2 r2 N r1 r1exp , 'K t k f E t k k H+= − =  (7) 

( ) ( )( )o3 o3 o3 Nexp 2K t k f E t=   (8) 

with fN = F/(RT), F = 96485 C mol-1 the Faraday constant, R = 8.32 J mol-1 K-1 the perfect gas constant, 

T in K the absolute temperature, kr1 in s-1 and kr2 in s-1 the transfer kinetic parameters of the reduction 

reactions, ko3 in s-1 the transfer kinetic parameter of the oxidation reaction, ar1, ar2 and ao3 the 

symmetry factors of the reduction reactions and the oxidation reaction, respectively, E(t) in V the 

electrode potential and the time t in s. 

With s(t) + H(t) = 1, the reaction rates (t) in mol cm-2 s-1 of each step of the overall reaction 

can be written by Equations (9) to (11): 

( ) ( ) ( )( )1 r1 H1-t K t t=    (9) 

( ) ( ) ( )( )2 r2 Ht K t t=    (10) 

( ) ( ) ( )( )3 o3 H1-t K t t=    (11) 

with  in mol cm-2 the total number of adsorption sites per unit area, H the covering factor of the 

adatom H, which is defined as H/, where H in mol cm-2 is the surface concentration of the adatom H. 

The Equation (12) of the evolution of the coverage rate dH(t)/dt writes1: 

( ) ( ) ( )H H sd / d / d / dt t t t t= = −     (12) 

with (Equation (13)) 

( ) ( ) ( ) ( )H 1 2 s- -t t t t= =     (13) 

Even though the rate of the oxidation reaction 3(t) does depend on the coverage rate of the 

adsorbed species, it does not affect its evolution as it consumes and produces an adsorption site. 

Hence, H(t) and s(t) depend solely on 1(t) and 2(t). 

Finally, the Faradaic current if(t) writes, Equation (14): 

( ) ( ) ( ) ( )( )f 1 2 3- -2i t F t t t= +    (14) 

Steady-state kinetic equations 

Steady-state equations are needed to determine the initial and final values of the potential, 

current and coverage rates. 

 
1 Please note the use of straight d for the derivatives as the coverage rates only depend on time. 
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Writing that at steady-state, Equation (15) 

( ) ( )H sd / d d / d 0t t t t= =   (15), 

we have been using Equationss (9-15), to obtain Equations (16) and (17): 

( ) ( ) ( ) ( )( )H r1 r1 r2/E K E K E K E= +  (16) 

( ) ( ) ( ) ( ) ( )( )( ) ( ) ( )( )f o3 r2 r1 r2 r1 r22 - /i E F K E K E K E K E K E K E= +
 (17) 

where E is the time-independent or steady-state potential. 

The corrosion potential (Equation (18)), defined as the potential for a zero Faradaic current 

(if(Ecorr) = 0), can be calculated from Equations (6) to (8) and (17): 

( ) ( )( )corr r1 o3 r1 o3 Nln / / 2E k k f= +   (18) 

Figure 1 below shows the steady-state Faradaic current and the coverage rate of the adatom H 

as a function of the steady-state potential E for a given set of kinetic parameters (shown in the 

caption of Fig. 1) and using Equations (6) to (8), (16) and (17). Two points are shown in Fig. 1, the 

initial steady-state potential Ei and the corrosion potential Ecorr with their corresponding Faradaic 

current and coverage rates.  

 
Figure 1. Steady-state evolution of (a) the current and (b) the coverage rate of the adatom H as a function 

of the steady-state potential E. The parameters used to plot these curves are:  =10-9 mol cm-2, fN = 38.9 V-1, 

r1 = 0.7, r2 = 0.3, ao3 = 0.5, kr1 = 2 s-1, kr2 = ko3 = 1 s-1, Ei = Ecorr + 0.05 V 

Steady-state Faradaic impedance 

The steady-state Faradaic impedance of the Volmer-Heyrovský corrosion reaction Zf is a sum of 

three terms [1,29], a charge transfer resistance and two surface concentration impedances related 

to adsorbed species s and H, Equation (19): 

( ) ( ) ( )f ct s HZ p R Z p Z p= + +  (19) 

with p = 2jf, f in Hz the frequency and j the imaginary number such that j2 = -1. 

The details of the calculation will not be given here, but we have Equation (20): 

( )
( )( )

( )( ) ( ) ( )( )
r2 r1 r2 r1

f

N r2 r1 r1 o3 r2 o3 o3 r2 r1 r2 r1 o3 r12 4 -2 2

K K K K p
Z p

f F K K K K p K K K p K K K p

+ + +
=

+ + + + + + + +   
 (20) 

The structure of this impedance is equivalent to that of an R + C/R circuit. To obtain the electrode 

impedance Z(p) we need to add in parallel the double-layer capacitance Cdl. The ECM that can be 

used to model the impedance of the Volmer-Heyrovský corrosion reaction is shown in Fig. 2 with 

Equations (21) to (23): 
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( )
r2 r1

ct

r2 o3 o3 r1 r2 r14 ( )N

K K
R

f F K K K

+
=

+ +   
 (21) 

( ) ( )

( ) ( ) ( )
r1 r1 r2 o3 ct r1 r2

o3 o3 r2 r1 o3 r1 r1 r2 r1 r1 r2 r2 r1

- -2 -

4 2 - 2

K K K K R
R

K K K K K K K K
=

+ + + +


 

    
 (22) 

( ) ( )
o3 o3 r1 r1 r2 r2

r1 r1 r2 o3 ct r1 r2

4

- -2 -

K K K
C

K K K K R

+ +
=

  

 
 (23) 

 
Figure 2. ECM used to model the Volmer-Heyrovský corrosion reaction 

Finally, we have Equation (24): 

( ) ( ) ( )f f dl  / (1 )Z p Z p Z p C p= +  (24) 

with Equation (25) 

( )f ct / (1 )Z p R R R C p= + +    (25) 

Please note that the reaction rate constants Kr1, Kr2 and Ko3 are dependent on the potential 

according to Equations (6) to (8). Figure 3 shows two Nyquist diagrams of the impedance Z at two 

different potential values, Ei and the corrosion potential Ecorr, using the same set of parameters as 

in Figure 1 and Cdl = 10 F. 

 
Figure 3. Nyquist diagrams of the steady-state impedance Z at two different steady-state potentials Ei (blue 

curve) and Ecorr (orange curve). The parameters used to plot these curves are:  = 10-9 mol cm-2, fN = 38.9 V-1, 

F = 96485 C mol-1, r1 = 0.7, r2 = 0.3, ao3 = 0.5, kr1 = 2 s-1, kr2 = ko3 = 1 s-1, Ei = Ecorr + 0.05 V, Cdl = 10 µF,  
fmin =100 mHz, fmax = 10 kHz 

Simulated experiment and objectives of this work 

As depicted in Fig. 4a, it consists of a simple current interrupt experiment: the electrochemical 

system, described by the Volmer-Heyrovský corrosion mechanism, is polarized at an anodic 
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potential Ei and a current i. At t = 0, the circuit is open and the potential decays to its other steady-

state value, namely Ecorr. The first objective of this work is to calculate the transient, non-stationary 

evolution of the potential between Ei and Ecorr, as illustrated in Figure 4b. 

 
Figure 4. Illustrative depiction of a) the current interrupt experiment and b) the unknown potential time 

evolution during its relaxation 

If the non-stationary time evolution of the potential E(t) is known, it means the time evolution of 

the various reaction rate constants Kr1(t), Kr2(t) and Ko3(t) can also be known. 

A time- and frequency-dependent impedance Zf(p,t) can then be defined using the expression of 

the steady-state Faradaic impedance (Equation 20), which makes the reaction rate constant and 

time-dependent. Similarly, Rct(t), R(t), C(t) and Z(p,t) can be defined and calculated by Equation 

(26). 

( ) ( ) ( )f f dl, , / (1 , )Z p t Z p t Z p t C p= +  (26) 

The second objective of this work is to show the non-stationary impedance Nyquist diagrams 

during the relaxation of the system using Eq. (26). 

E(t) and H(t) determination 

Assuming zero Faradaic current 

Our system of equations to solve is composed of an ordinary differential equation (ODE), which 

is Equation (12). Using Equations (9), (10) and (13) it writes Equation (27): 

( ) ( )( ) ( )( ) ( )( ) ( )( )H r1 H r2 Hd / d 1- -t t K E t t K E t t=    (27) 

During the relaxation experiment, it was first assumed that if = 0. We then used Equations (9) to 

(11) and (14) to obtain Equation (28). 

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )r1 H r2 H o3 H1- - -2 1- 0K E t t K E t t K E t t =    (28) 

Equations (27) and (28) constitute a differential algebraic system of equations (DAE), and which 

can be solved numerically. 

The general form of a DAEs is presented by Equations (29) and (30): 

( ) ( )( )d / d , ,x t f x t y t t=  (29) 

( ) ( )( )0 , ,g x t y t t=  (30) 

In our case, x(t) = H(t) and y(t) = E(t). 
The NDSolve function in Mathematica 14 [30] was used to solve this DAE. The steady-state values 

were set as initial conditions E(0) = Ei and H(0) = H(E(0)). The same parameters as in Figures 1 and 

http://dx.doi.org/10.5599/jese.2467
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3 are used. In this case, the NDSolve function can only give a solution, an interpolation function 
defined for a given period (in our case 50 s), if the initial condition on the potential is not respected. 
This is shown in Figure 5: the initial potential is not Ecorr + 0.05 V, which means the assumption needs 

to be revised. However, H(t) seems to be correct. 

 
Figure 5. Simulated (a) E(t) and (b) H(t) assuming a zero Faradaic current during the relaxation.  

The solution for E(t) is wrong as it does not fulfill the initial condition E(0) =Ei 

Assuming zero total current 

As the total current is the sum of the capacitive and the Faradaic current, assuming a zero total 

current during the relaxation leads to ic = -if and Equation (31): 

( )
( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )dl r1 H r2 H o3 H

d
1- - -2 1-

d

E t
C F K E t t K E t t K E t t

t

 
= 

 
     (31) 

which is an ODE and constitutes with Equation (27) an ODE system. Using again the NDSolve function 

in Mathematica, two interpolation functions are obtained that both fulfil the initial conditions 

(Fig. 6). It is noteworthy that the transient open circuit voltage (OCV) goes below the long-time limit 

Ecorr and that H(t) has the same shape as in Figure 5. 

 
Figure 6. Simulated (a) E(t) and (b) H(t) assuming a total zero current during the relaxation. Both solutions 

fulfill the initial conditions E(0) = Ei and H(0) = H(E(0)) 

Time-variant impedance 

Now that E(t) is known, Kr1(t), Kr2(t) and Ko3(t), or more explicitly Kr1(E(t)), Kr2(E(t)) and Ko3(E(t)) 

can be caluclated. Introducing time in Equations (21) to (23) Rct(t), R(t), the polarization resistance 

Rp(t) = R(t) + Rct(t) and C(t) (Figure 7) can be computed. 

One can note in Fig. 7 the negative signs of R(t) and C(t), which was to be expected considering 

the shape of the impedance diagram shown in Fig. 3, with a low-frequency inductive loop, typical of 

a Volmer-Heyrovský mechanism [1]. 
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Figure 7. Simulated (a) Rct(t), R(t) Rp(t), (b) C(t) as a function of time during the relaxation of the OCV for 
the Volmer-Heyrovský corrosion mechanism using parameters shown in Figure 3 

To be able to plot the time-variant impedance measurement, for which, as a reminder, it is 

considered that the system is steady-state at each point, the time corresponding to each applied 

frequency needs to be calculated, considering that each frequency is applied sequentially from the 

highest to the lowest, which means we need to account for the accumulation of time. 

Equation (32) was used: 

( )k

=1

1
k

j

j

t N pw T= +  (32) 

with tk the time corresponding to the kth frequency, N the number of periods chosen for the 

measurement and pw a percentage of the period used as a waiting time to reduce inter-frequency 

transient regime, and Tj is the period of the jth frequency. 

A list of k frequencies fk and the corresponding list of periods Tk = 1/fk were considered. 

Equation (32) above gives the list of the corresponding times tk. 

Table 1 gives values for 6 frequencies over a decade. 

Table 1. Numerical examples for the formula given in Equation (32) using N = 2 and pw = 10 % 

Rank k f/Hz T/s t/s 

1 100 0.01 0.022 

2 68.13 0.015 0.054 

3 46.42 0.022 0.102 

4 31.62 0.032 0.171 

5 21.54 0.046 0.273 

6 14.68 0.068 0.423 

7 10.00 0.10 0.643 
 

Here we will try to discuss an inherent contradiction of our approach: the assumption that the 

system is stationary at each measurement allows us to use a Faradaic impedance expression derived 

from this assumption shown in Equation (20), in which a time-dependent term is “injected”, here 

E(t). In our previous paper [2], this assumption could be verified by low values of non-stationary 

distortion (NSD) indicators. However, if our system is stationary at each measurement point, how 

can it be non-stationary over the whole measurement?  

The way we exit this contradiction is by saying that the negligibility of the time-variance at each 

point does not hold if all points are considered. In other terms, the small error conceded at each 

point accumulates over the whole spectrum and becomes non-negligible. This, of course, favors the 

use of input modulation made of simultaneous frequencies, as mentioned in the introduction. This 

is exactly what is referred to by quasi-stationarity: the system has a certain “level” of non-

http://dx.doi.org/10.5599/jese.2467
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stationarity that can, within certain conditions, be considered negligible. The same approach is used 

to consider linearity: an electrochemical system is nonlinear, but it is assumed that below a certain 

level, its non-linearity can be considered negligible. 

In case the system is “strongly” non-stationary due to a fast scan rate, for example, in a DEIS 

experiment or a large charge/discharge current for a battery, our approach is not valid.  

Similarly, if the system behaviour is strongly nonlinear due to a very large amplitude, the measured 

impedance cannot be analysed in terms of “classical” Faradaic impedance or with “classical” ECMs.  

Figure 8 shows the Nyquist diagram of the time-variant electrode impedance corresponding to 

Equations 26 and 25 (ZTV, black dots) and the two steady-state impedance graphs already shown in 

Figure 3 (ZSt, t = 0, ZSt, t = tmax), which correspond to the impedance of the system in its initial and final 

state. The graph distortion is visible at mid-frequencies and corresponds to the change of 

parameters shown in Fig. 7.  

 
Figure 8. Simulated Nyquist diagram of the time-variant impedance expression shown in Equation (26) in 

black dots. The orange and blue curves correspond to the two steady-state impedance graphs already 
shown in Figure 3, which correspond to the initial and final state of the system. The parameters are the 

same as in Figure 3, with 6 points per decade, N = 2 and pw = 10 %. 

The larger semi-circle at mid-frequencies corresponds to Cdl/Rct and the low-frequency inductive 

loop to C/R. The kinetic constants and potential ranges were chosen to show a low-frequency 

inductive loop. For the Volmer-Heyrovský mechanism, low-frequency capacitive behaviour is 

expected at cathodic potentials [1,29]. The timescales shown in Figures 5 to 7 depend on the kinetic 

parameters chosen. 

The second part of the paper will deal with the experimental validation of this theoretical 

approach. 

Conclusion 

Basically, in the literature, two approaches were adopted to deal with non-stationary impedance 

measurements: either a mathematical treatment and correction of the data or an adjustment of the 

input modulation such that the system is considered in a quasi-stationary state across the whole 

frequency range. 
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In this part of the paper, an approach based on the electrochemical reaction that takes place in 

the system under study was presented, for which the non-stationarity of the system can be 

calculated and accounted for in the Faradaic impedance expression. 

The transient potential and coverage rate evolution during the relaxation of a system where the 

Volmer-Heyrovský corrosion mechanism takes place were calculated by solving a system of two 

ODEs written using the kinetic equations governing the reaction and assuming, during the 

relaxation, that the sum of the capacitive and Faradaic currents is equal to zero.  

Stationary impedance expressions for this mechanism were given and converted into time and 

frequency-dependent expressions using the potential evolution previously determined. It was then 

possible to simulate the time and frequency-dependent impedance that would be measured during 

the relaxation. This approach removes the need to estimate or correct non-stationarity of the 

system, as it is “embedded” in the Faradaic impedance expression. 
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