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Unit cell design

In Figure S-1, the dynamic characteristics of the electrolyte flow for the first and the last models
are shown. Through image processing, it was determined that in the first model 31 % of the anode
surface was not effectively exposed to the circulating electrolyte. That percentage was reduced to
17 % in the last model. Effective electrolyte exchange is important because the larger the anode
area in contact with a fresh electrolyte, the better the cell performance [1].

0.00 0.02 0.04 0.06

Figure S-1. Electrolyte domain simulation in COMSOL Multiphysics 5.5

The first unit cell consisted of three structures, one for each battery component. Figure S-2 shows
the construction plan with the following color coding: blue for the cathode, green for the electrolyte,
and red for the anode. Each main piece was designed with a square geometry, with 6.38 cm per
side. Once assembled, the total thickness of the cell was 1.13 cm, of which 0.57 cm corresponded
to the electrolytic structure.
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In the cathode structure, the membrane must be glued on the inside of the cell, since this
coincides with the face of the membrane that has a suitable material to carry out the union; the
opposite side of the membrane has a thin film of carbon which is peeled off with prolonged cell
operation and may become a leak point.

Two conduits were made in the electrolytic structure to allow the flow of the solution, and the
electrolyte flows upwards within the cell to ensure the correct filling of the entire space. We aimed
for the smallest practical thickness, considering that the space between the electrodes must
constitute a space large enough to avoid a short circuit, but as small as possible to minimize the
distance the ions travel [2]. This last aspect aims to minimize ohmic polarization, which negatively
affects the voltage delivered by the cell.

The anode structure was designed to fit the exact size of the aluminum plate, which allowed
controlling of the anode area exposed to the electrolyte.
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Figure S-2. Construction plan of the first unit cell prototype

Figure S-3 shows our current model in which the anodic and electrolytic structures were fused
into one piece. This allowed solving the problem present since the second model, which is related
to the complexity of contacting the cathode. Since the structure had a greater thickness, it allowed
the creation of the exit channel with a better alignment.
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Figure S-3. Construction plan of the unit cell

Evaluation of the recirculation system in the operation of unit cell

To determine if there is a significant difference in the operating time of the cell when the
electrolyte is in circulation or not, a Student's T-test was performed with unequal variances in the
case of 4 mol L't KOH and a Student's T-test with equal variances in the case of 4 mol L1 KOH + 1
mol L' NH4VOs (See Table S-1).

Table S-1. Student's T-test results for cell discharge time data obtained with and without electrolyte

recirculation
Battery system T (Student's T-test) p-value
4 mol L't KOH 3.33 0.04
4 mol L' KOH + 1 mol L't NH4VO3 35.45 1.89x10°

Through p-value, it can be concluded with 95 % confidence that the operating time when the cell
has the electrolyte in circulation is significantly higher.

1 Power supply, 2 Unit cell, 3 Connectors, 4 Electrodes, 5 Hose,
6 Mohr’s pinch clamp, 7 Peristaltic pump, 8 Storage tank

Figure S-4. Experimental diagram used in the construction of discharge curves without electrolyte flow
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Figure S-5. Unit cell discharge curves and capacity values obtained using a) 4 mol L KOH and b) 4 mol L
KOH + 1 mol L' NH,VOs in a system without electrolyte flow, at current density equal to 3.33 mA cm™

Potassium hydroxide concentration evaluation

To determine if there is a significant difference in the power and current density obtained by the

cell according to the concentration of the potassium hydroxide solution, a Student's T-test was
performed with unequal variances.

Table S-2. Student's T-test results for the power and current density data obtained by the cell according to the
concentration of the potassium hydroxide solution.

Variable T (Student's T-test) p-value
Power 13.55 2.66x103
Current density 207.51 4.63x10°

Through p-value, it can be concluded with 95 % confidence that the power and current density
obtained with the 4 mol L'* KOH solution are significantly higher than when 0.1 mol L't KOH was used.
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Figure S-6. Power as a function of current density obtained with the unit cell using two concentrations of
potassium hydroxide
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Evaluation of anticorrosive capacity and a ventilation system

A factorial design 22 was carried out whose independent variables were the use of anticorrosive
and a ventilation system.

Table S-3. Results of the ANOVA for the determination of the conditions that maximize the power delivered by
the unit cell with a current density of 3.33 mA cm™

Source of variability p-value
Anticorrosive (A) 0.000
Ventilation (B) 0.035
A-B 0.030

Through p-value, it is concluded with 95 % confidence that both the two effects and their
interaction are significant. Since you want to maximize the response variable (power), you should
not use ventilation or add an anticorrosive agent to the electrolyte.

1 Power supply, 2 Fan, 3 Flow director, 4 Connectors, 5 Unit cell,
6 Electrodes, 7 Peristaltic pump, 8 Hose, 9 Storage tank

Figure S-7. Experimental diagram used for assisted ventilation treatments
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Figure S-8. Power obtained with the unit cell as a function of current density
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Corrosion rate test

1 Beaker 250 mL, 2 Two prong utility clamps, 3 Aluminum alloy, 4 Magnetic
stirrer, 5 Retort stand, 6 Tag, 7 Magnetic stirring bar

Figure S-9. Experimental diagram for determination of corrosion rate
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Figure S-10. Box diagram for annual corrosion rate of 5052 aluminum A: 4 mol L2 KOH, B: 0.1 mol L* KOH,
C: 4mol L' KOH + 0.2 mol L' ZnO, D: 0.1 mol LX KOH + 0.2 mol L™* ZnO, E: 4 mol L* KOH + 0.2 mol L™
NH4VOs, F: 4 mol L'E KOH + 0.5 mol L2 NH4VO3, G: 4 mol L2 KOH + 1 mol L2 NH4VO3, H: 4 mol L2 KOH +
2 mol L' NH,VOs and I: 4 mol L2 KOH + 0.2 mol L™ Na,SO4-H,0

Determination of anticorrosive agents
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1 Power supply, 2 Unit cell, 3 Connectors, 4 Electrodes, 5 Hose,
6 Peristaltic pump, 7 Storage tank

Figure S-11. Experimental diagram used in the construction of discharge curves
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Table S-4. Summary of performance of different battery systems in different electrolytes

Battery system Current density, mA cm 2 Capacity, mAh?lg?
1656.99
0.1 mol L' KOH 3.33 1756.55
1683.62
18.62
0.67 22.88
4 mol Lt KOH 12042'5667
3.33 109.59
186.21
50.55
0.67 54.76
4 mol LY KOH + 0.2 mol L"*NHaVOs 22'22
3.33 60.40
63.12
41.80
0.67 41.37
4 mol L' KOH + 0.5 mol L1 NH4VOs3 1307'9]?5
3.33 244.92
178.38
58.40
0.67 82.16
4 mol LY KOH + 1 mol L"*NH4VOs3 67513;9180
3.33 712.78
655.68
2163.96
4 mol L' KOH + 2 mol L"*NH4VO3 0.67 ;;;icl);
3.33 -
50.49
0.67 51.03
4 mol L1 KOH + 0.2 mol L*ZnO 364147872
3.33 355.41
376.27
%13.33 mA cm? 4
{o-oom C1m —1656.99 mAh g
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Figure S-12. Discharge curves and capacity values of the unit cell using aluminum 5052 as anode and
0.1 mol L' KOH as electrolyte, at current density of 3.33 mA cm™
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Figure S-13. Discharge curves and capacity values of the unit cell using aluminum 5052 as anode and
4 mol L 1 KOH as electrolyte, at current density of 0.67 mA cm™
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Figure S-14. Discharge curves and capacity values of the unit cell using aluminum 5052 as anode and
4 mol L' KOH as electrolyte, at current density of 3.33 mA cm™
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Figure S-15. Discharge curves and capacity values of the unit cell using aluminum 5052 as anode and
4 mol L' KOH + 0.2 mol L™* NH,V O3 as electrolyte, at current density of 0.67 mA cm™
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Figure S-16. Discharge curves and capacity values of the unit cell using aluminum 5052 as anode and
4 mol L' KOH + 0.2 mol L' NH,VOs as electrolyte, at current density of 3.33 mA cm™
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Figure S-17. Discharge curves and capacity values of the unit cell using aluminum 5052 as anode and
4 mol L' KOH + 0.5 mol L' NH,VOs as electrolyte, at current density of 0.67 mA cm™
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Figure S-18. Discharge curves and capacity values of the unit cell using aluminum 5052 as anode and

4 mol LY KOH + 0.5 mol L

1 NH4VOs as electrolyte, at current density of 3.33 mA cm?

$19



J. Electrochem. Sci. Eng. 13(6) (2023) S11-S23

1.6 1

Supplementary material

—5840mAhg’
—8216mAhg’
—7198mAhg’

1.4+

1.24

< 1.0
S 0.8

e,

0.6

Volta

04]0.67 mAcm”

0.2
1

0.0

4 mol L KOH +
mol L NH,VO,

=

0

5 10

-
15 20 25 30
Time, h

Figure S-19. Discharge curves and capacity values of the unit cell using aluminum 5052 as anode and
4 mol L' KOH + 1 mol L' NH4VOs as electrolyte, at current density of 0.67 mA cm™
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Figure S-20. Discharge curves and capacity values of the unit cell using aluminum 5052 as anode and
4 mol L' KOH + 1 mol L™* NH,V O3 as electrolyte, at current density of 3.33 mA cm?
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Figure S-21. Discharge curves and capacity values of the unit cell using aluminum 5052 as anode and
4 mol L' KOH + 2 mol L' NH4VOs as electrolyte, at current density of 0.67 mA cm™
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Figure S-22. Discharge curve of the unit cell using aluminum 5052 as anode and 4 mol L' KOH + 2 mol L™
NH4VO;s as electrolyte, at current density of 3.33 mA cm?
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Figure S-23. Discharge curves and capacity values of the unit cell using aluminum 5052 as anode and
4 mol L KOH + 0.2 mol L™ ZnO as electrolyte, at current density of 0.67 mA cm™
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Figure S-24. Discharge curves and capacity values of the unit cell using aluminum 5052 as anode and
4 mol L' KOH + 0.2 mol L'* ZnO as electrolyte, at current density of 3.33 mA cm™
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Figure S-26. Aluminum 5052 after 100 min of immersion in 4 mol L™> KOH + different concentrations of
NH4VO3: A-0.2mol L, B—0.5mol L'; C—1.0 mol L' and D - 2.0 mol L™?
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Figure S-27. Discharge curves of 4-unit-cell arrangement in a) series and b) parallel electrical connection

using 4 mol L'* KOH
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Figure S-28. Discharge curve obtained with 4-unit cells arranged with electrical connection in parallel using
4 mol L' KOH + 1 mol L™* NH,VO3, at current density of 11.11 mA cm™
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