Original scientific paper

Electrocatalytic response of nitrogen-doped hollow carbon spheres modified glassy carbon electrode for sulphite detection in water

Ashkan Basande¹ and Hadi Beitollahi²,✉

¹Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
²Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

Corresponding author: ✉ h.beitollahi@yahoo.com; Tel./Fax: +98 3426226613

Received: July 15, 2023; Accepted: August 26, 2023; Published: October 25, 2023

Abstract

In this work, the glassy carbon electrode (GCE) surface was modified with nitrogen-doped hollow carbon spheres (N-HCSs) to achieve a new electrochemical sulphite sensor (N-HCSs/GCE) in water samples. The N-HCSs were explored for electrocatalytic behavior through voltammetric approaches using a routine three-electrode system. The findings revealed an admirable efficiency for modified electrodes towards sulphite oxidation, highlighting the effectiveness of our as-produced sulphite sensor. The differential pulse voltammetry was utilized under obtained optimal circumstances to study the as-developed sensor, the results of which underlined linear electrochemical current in relation to sulphite concentration, with dynamic range as wide as 1.0-100.0 μM and limit of detection as narrow as 0.35 μM. Moreover, N-HCSs/GCE had commendable practical applicability for sensing sulphite present in real specimens with voltammetric techniques.

Keywords

Electrochemical sensing; electroanalysis; modified electrodes

Introduction

Sulphite, with its multifaceted function as a preservative, antibacterial, bleaching agent and inhibitor of oxidation and enzyme processes, is widely applied as an additive in the pharmaceutical, beverage and food products within production and storage [1,2]. Sulphites added to vegetables and fruits can prevent rotting and browning and cause food starch to whiten [3]. These substances in pharmaceuticals maintain the strength and stability of some drugs [4]. Correspondingly, sulphite content should be determined and maintained within standard limits to prevent toxicity and adverse effects on human health and the environment [5,6]. Sulphite ions (SO₃²⁻), as the main constituent of aqueous solutions of sulphur dioxide (SO₂), if found in natural waters, can influence the balance of acid and base, and reduce dissolved...
oxygen, thus leading to a harmful impact on aquatic organisms. Excessive levels of sulphite in human body may be accompanied by nettle rash, swelling, headache, diarrhea, nausea, stomach irritation, and asthma episodes [7,8]. The sulphite determination has been carried out previously using diverse methods, including high-performance liquid chromatography [9], spectrophotometry [10], flow injection analysis [11], capillary electrophoresis [12] and electrochemical technique [13-16].

In comparison, electrochemical approaches have been of prominent importance in determination of various electroactive compounds due to their admirable advantages such as time-effectiveness, cost-effectiveness, and facile instrumental demands [17-22]. Glassy carbon (GC) is a form of carbon with a smooth, glass-like surface and a high degree of structural disorder. GC has become an interesting and widely applied inert electrode material in electroanalysis because of its low cost, low background current, electrochemical inertness in a wide potential window, chemical stability, good electrical conductivity, impermeability, high hardness, resistance to fouling, and easy surface modification [23-25]. Reports have shown a positive effect of modifying the electrode surface on increasing the performance of the electrochemical methods [26-29]. Today, thanks to nanomaterials and nanoparticles, nanotechnology has led to various technological advances globally, including nanomedicine, water treatment, catalysis, sensors and energy storage, which can be related to their adjustable physical and chemical properties [30-36]. Hence, various nanomaterials were synthesized in the past decades using different approaches to achieve strong properties in various applications in different fields.

Researchers recently reported the production of many electrocatalytic nanomaterials for the fabrication of electrochemical sensors due to their excellent electrochemical properties, such as specific surface area, chemical stability, and admirable electrical conductivity [37-46]. Carbon-based materials, as modified electrode agents, have recently found a special place for themselves due to their unique properties such as green nature, cost-effectiveness, significant conductivity, wide potential range, and portable modification [47]. For example, hollow carbon spheres (HCSs) are appropriate options as effective catalyst materials in electroanalysis and electrochemical determination, owing to their good conductivity, large specific surface area, high surface permeability, chemical stability, and low density [48-50]. One of the surface modification methods is heteroatom doping, which can improve some properties of HCSs, such as increasing catalytic active sites, electrical conductivity, edge plane defect sites, and induction of synergistic impact [51]. Nitrogen-doped HCSs (N-HCSs) have shown recently commendable electroanalysis behaviours [52,53].

According to the merits mentioned for N-HCSs, the present work developed to construct a new electrochemical sulphite sensing system based on N-HCSs/GCE. The electrochemical performance of sulphite was explored on the surface of both bare GCE and modified N-HCSs/GCE. As-developed N-HCSs could significantly enhance the response of sulphite and decrease the potential of oxidation. The differential pulse voltammetry (DPV) findings revealed the admirable performance of N-HCSs/GCE for sulphite determination, with great sensitivity, broad linear dynamic range and narrow limit of detection (LOD). Moreover, our proposed sensor had commendable practical applicability for sensing sulphite present in real specimens with voltammetric techniques.

Experimental

Equipment

The Autolab PGSTAT 302N electrochemical workstation (Eco Chemie, The Netherlands) with a conventional three-electrode cell was used for all electrochemical studies. The Metrohm -713 Model pH meter’s combination glass electrode has been employed to measure pH values.
Chemicals

Each chemical used in this study was of analytical grade and used exactly as supplied. The Millipore Direct-Q® 8 UV (ultra-violet) device (Millipore, Germany) was utilized to create deionized water utilized during all of the tests. This investigation employed phosphate-buffered solutions (PBS, pH 7.0, 0.1 M). The synthesis and characterization of N-HCSs and related nanostructures have been reported in our previous work [54].

Modification of GCE with N-HCSs

GCE was polished using alumina slurries on a polishing cloth before modification, then rinsed thoroughly with deionized water and dried. In the next step, 1 mg of prepared N-HCSs were suspended in deionized water (1 ml) and subjected to ultrasonication for 20 min to disperse completely. Subsequently, N-HCSs dispersion (3 μL) was gently drop-casted on the electrode surface by using a micropipette and allowed to dry at ambient temperature. Finally, a thin layer of N-HCSs was formed on the surface of GCE (N-HCSs/GCE).

To estimate the electrochemically active surface area (EASA) of unmodified GCE and N-HCSs/GCE, cyclic voltammograms were recorded at different scan rates in 0.1 M KCl solution containing 1.0 mM K\textsubscript{3}[Fe(CN)\textsubscript{6}] as a redox probe. By using Randles–Ševčík equation, the value of EASA for N-HCSs/GCE (0.128 cm2) was 4.1 times greater than unmodified GCE.

Results and discussion

Evaluation of electrocatalytic activity of N-HCSs towards sulphite

In order to explore the impact of PBS’s pH value (pH 2.0 to 9.0) on the electrochemical detection of sulphite, DPV analysis was performed. When the current response of sulphite in PBS was compared at various pH levels, pH 7.0 produced the highest peak current of 100.0 μM sulphite (Figure 1). As a result, in subsequent investigations, detection of sulphite was done in 0.1 M PBS (pH 7.0). The electrochemical oxidation reaction of sulphite on N-HCSs/GCE can be expressed as Eq. (1):

\[
\text{SO}_3^{2-} + \text{H}_2\text{O} \rightarrow \text{SO}_4^{2-} + 2\text{H}^+ + 2e^- \tag{1}
\]

Figure 1. Plot of \(I_p\) against pH values of 0.1 M PBS obtained from DPVs in the presence of 100.0 μM sulphite

The cyclic voltammograms (CVs) recorded for sulphite (100.0 μM) on surfaces of unmodified GCE and N-HCSs/GCE are shown in Figure 2. The oxidation peak current was very low \((I_{pa} = 2.25 \mu\text{A})\) on unmodified electrode, meaning a weak electrochemical response of unmodified electrode. The \(I_{pa}\) increased to 10.4 μA on the N-HCSs/GCE surface. In addition, sulphite oxidation peak potential \((E_{pa})\)
was decreased from 780 mV (on unmodified GCE surface) to 620 mV (on N-HCSs/GCE surface). These results imply that the catalytic performance of N-HCSs is significant towards sulphite.

Figure 2. CVs of unmodified GCE (curve a) and N-HCSs/GCE (curve b) in 0.1 M PBS (pH 7.0) containing 100.0 µM sulphite at scan rate of 50 mV s⁻¹

Effect of scan rate on oxidation reaction of sulphite

To investigate the effect of scan rate on the oxidation reaction of sulphite, CV responses of 100.0 µM sulphite in 0.1 M PBS (pH 7.0) at different scan rates ranging are recorded (Figure 3).

Figure 3. CV responses of N-HCSs/GCE from a solution of 0.1 M PBS (pH 7.0) and 100.0 µM sulphite at different scan rate (a-o: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500 and 600 mV s⁻¹). Inset: Plot of peak currents of sulphite vs. $v^{1/2}$
The sulphite’s oxidation peak current increases as the scan rate increases. The linearity between oxidation peak currents and the square root of the scan rate ($v^{1/2}$) is depicted in Figure 3 (Inset). With increasing $v^{1/2}$, sulphite oxidation peak currents proportionally increase. This demonstrates that sulphite oxidation reaction on the surface of N-HCSs/GCE is a diffusion-controlled mechanism [55].

Figure 4 (inset) depicts the Tafel plot based on data from the rising section of the current-voltage curve at a scan rate of 10 mV/s for 100.0 μM sulphite to determine the rate-determining step. The role of electrode process kinetics is evident based on the linear relationship of E against the log I plot, whose slope depends on the number of electrons transferred in the process of rate-determining step. Figure 4 (inset) shows an estimated Tafel slope of 0.1733 V. Therefore, the one-electron transfer process can be seen in the rate-limiting step regarding with the transfer coefficient of $\alpha = 0.66$ [55].

Figure 4. CV captured from 100.0 μM sulphite at 10 mV s$^{-1}$ scan rate
Inset: Tafel plot based on rising part of related CV

Chronoamperometric analysis

Using chronoamperometry, the electrochemical reaction of sulphite at N-HCSs/GCE has also been examined. The chronoamperograms of various concentrations of sulphite obtained at a potential step of 660 mV are shown in Figure 5. In chronoamperometric studies, the diffusion coefficient of sulphite was determined. In order to do that, changes in response current were drawn vs. $t^{1/2}$ for different concentrations of sulphite (Figure 5, Inset A). The acquired lines’ slopes were plotted against different sulphite concentrations (Figure 5, Inset B). From the slope of the resulting plot and using Cottrell’s equation, the diffusion coefficient of sulphite on the surface of N-HCSs/GCE was found to be equal to 4.45×10$^{-5}$ cm2 s$^{-1}$. The value of D is comparable with values reported in some previous works (1.75×10$^{-5}$ [56], 2.5×10$^{-5}$ [57] and 1.2×10$^{-6}$ cm2 s$^{-1}$ [58].

Quantitative determination of sulphite by DPV

Utilizing the DPV method, sulphite oxidation on N-HCSs/GCE was measured. Figure 6 shows DPV results obtained at a modified GCE surface in PBS (pH 7.0, 0.1 M) at sulphite concentrations ranging from 1.0 to 100.0 μM. The constructed sensor’s good detection capabilities were demonstrated by increasing oxidation peak currents as sulphite concentration increased. With a coefficient of $\log (I/A) = 0.1733x + 0.3349$
$R^2 = 0.9981$
determination (R^2) of 0.9996, a plot of sulphite oxidation peak current vs. concentration revealed a perfectly linear response for sulphite ranging from 1.0 to 100.0 μM. The LOD was calculated using this formula: LOD=$3S_b/m$, S_b represents the standard deviation of response for blank solution (0.1 M PBS) (obtained based on eight measurements) and m denotes slope obtained from linear regression curve. The LOD was calculated to be 0.35 µM. The performance comparison of the developed sensors in this study with previous studies is shown in Table 1. As can be seen, the developed sensor based on N-HCSs/GCE provides the least LOD compared to the other reported sensors (Table 1).

\[y = 22.851x + 9.7378\quad R^2 = 0.9996\]
\[y = 0.0917x + 0.8833\quad R^2 = 0.9996\]

Figure 5. Single-step chronoamperograms of N-HCSs/GCE sensor in 0.1 M PBS (pH 7.0) with different concentrations of sulphite (a: 0.1, b: 0.5, c: 1.0 and d: 1.5 mM). Insets: Variations of I vs. $t^{1/2}$ taken from chronoamperograms (A) and plot of corresponding slopes against sulphite concentration

Figure 6. DPV response at N-HCSs/GCE in 0.1 M PBS (pH 7.0) with different concentrations of sulphite (a-l: 1.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0 and 100.0 μM)

Inset: Calibration curve of voltammetric response (I_{pa}) versus sulphite level
Table 1. Comparison of N-HCSs/GCE sensor with previously reported sulphite sensors

<table>
<thead>
<tr>
<th>Electrochemical sensor</th>
<th>Electrochemical method</th>
<th>Linear range, µM</th>
<th>Limit of detection, µM</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiwalled carbon nano-tubes/carbon paste electrode</td>
<td>Square-wave voltammetry</td>
<td>25-500</td>
<td>16</td>
<td>[2]</td>
</tr>
<tr>
<td>MIL-101(Cr) metal-organic framework/CPE</td>
<td>Amperometry</td>
<td>2-70</td>
<td>0.58</td>
<td>[13]</td>
</tr>
<tr>
<td>Lutetium (III) hexacyanoferrate microparticles/poly(taurine)/GCE</td>
<td>DPV</td>
<td>-</td>
<td>1.33</td>
<td>[14]</td>
</tr>
<tr>
<td>MoS2 flakes/Nafion/GCE</td>
<td>DPV</td>
<td>5-500</td>
<td>3.3</td>
<td>[15]</td>
</tr>
<tr>
<td>CuO nanosheet/GCE</td>
<td>DPV</td>
<td>50-1600</td>
<td>21.10</td>
<td>[16]</td>
</tr>
<tr>
<td>N-HCSs/GCE</td>
<td>DPV</td>
<td>1.0-100.0</td>
<td>0.35</td>
<td>This work</td>
</tr>
</tbody>
</table>

Stability, repeatability, and reproducibility studies of N-HCSs/GCE toward determination of sulphite

The stability of the prepared sensor was investigated by examining the current response of N-HCSs/GCE towards sulphite (70.0 µM) every five days over 20 days (stored at ambient temperature). The prepared sensor exhibited only a slight decrease (4.8 %) in the last current response from its original current response after 20 days of storage. To investigate repeatability of N-HCSs/GCE sensor, measurements were repeated in 0.1 M PBS (pH 7.0) containing 70.0 µM sulphite. The acceptable repeatability was obtained with relative standard deviation (RSD) of 3.6 % after using the same sensor for six continuous measurements. The reproducibility of the prepared sensor was also investigated by observing the current response of four electrodes (N-HCSs/GCE) prepared independently under the same conditions. All four prepared electrodes showed a similar response, and RSD was 3.9 % in the determination of sulphite (70.0 µM). These finding verifies that prepared N-HCSs/GCE has good storage stability, reproducibility, and repeatability towards sulphite sensing.

Real sample analysis

To verify the practical application of N-HCSs/GCE for sulphite electrochemical detecting, real water matrices, including tap water and well water, were analysed using the standard addition method. The sulphite oxidation peak currents were determined using the DPV method after adding various known concentrations of sulphite to water samples. The analytical findings are shown in Table 2. According to findings, sulphite recoveries for various water samples ranged from 97.5 to 103.3 %, and RSDs for five consecutive tests were below 3.5 %. These findings show that N-HCSs are a superior material for sulphite sensing in real sample analysis.

Table 2. Estimation of sulphite in water samples using N-HCSs/GCE (n = 5)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Spiked concentration, µM</th>
<th>Found concentration, µM</th>
<th>Recovery, %</th>
<th>RSD, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tap water</td>
<td>4.0</td>
<td>3.9</td>
<td>97.5</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>6.2</td>
<td>103.3</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>8.0</td>
<td>7.9</td>
<td>98.7</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>10.0</td>
<td>10.1</td>
<td>101.0</td>
<td>2.1</td>
</tr>
<tr>
<td>Well water</td>
<td>5.0</td>
<td>5.1</td>
<td>102.0</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>7.0</td>
<td>6.9</td>
<td>98.6</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>9.0</td>
<td>8.8</td>
<td>97.8</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>11.0</td>
<td>10.9</td>
<td>99.1</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Conclusion

The current research reported a facile and sensitive electrochemical sulphite sensor using a N-HCSs-modified GCE. Electrochemical investigations by CV showed a considerable increase in current intensity and a decrease in the over-potential for sulphite on N-HCSs/GCE compared with unmodified GCE. The as-developed electrode exhibited a linear response to sulphite with a dynamic

http://dx.doi.org/10.5599/jese.1966
concentration range as wide as 1.0-100.0 μM with a limit of detection as narrow as 0.35 μM. Also, the repeatability, stability, and reproducibility of N-HCSs/GCE sensors were studied and provided good characteristics. Moreover, N-HCSs/GCE had successful applicability for sensing sulphite in real specimens. The good precision (RSD ≤ 3.5 %) and accuracy (recovery for spiked samples ranging from 97.5 to 103.3 %) were obtained.

References

https://doi.org/10.1016/j.snb.2018.05.036

https://doi.org/10.1080/1536383X.2018.1512973

https://doi.org/10.1021/acs.iecr.2c03107

https://doi.org/10.1007/s11581-011-0654-z
