Electrochemical determination of vitamin B6 in pharmaceutical and energy drink samples

Original scientific paper


  • Gizaw Tesfaye Department of Chemistry, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia https://orcid.org/0000-0002-3108-0029
  • Merid Tessema Department of Chemistry, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
  • Negussie Negash Department of Chemistry, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia https://orcid.org/0009-0007-5057-9152




Glassy carbon electrode, Electropolymerization, Square wave voltammetry, poly(phenylalanine), F-MWCNT
Graphical Abstract


A simple and low-cost electrochemical sensor based on poly(phenylalanine) and function­nalized multi-walled carbon nanotubes (F-MWCNTs) modified glassy carbon electrode (GCE) was developed for the determination of vitamin B6 (VB6). The surface morphology of modified glassy carbon electrodes was investigated with scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The electrocatalytic activities of the bare and modified electrodes were investigated in the presence of ferri-ferrocyanide redox couple using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The exchange current density (jo = 2462 µA cm-2) and electron transfer rate constant (ko = 0.002 cm s−1) were calculated using 5 mM K3[Fe(CN)6]. The electro­chemical activity of poly(phenylalanine)/F-MWCNT/GCE towards VB6 oxidation was investigated using CV. Parameters including the number of electrons transferred (n = 2), number of protons transferred (H+ = 2), electron transfer coefficient (α = 0.51) and surface concentration of VB6 (G = 0.24 nmol cm2) were calculated. At the optimal experimental conditions, the oxidation peak current of VB6 measured by square wave voltammetry (SWV) was found proportional to its concentration in two linear ranges of 0.5 to 20 µM and 20 to 200 µM with a low detection limit (LOD) of 0.038 µM and limit of quantification (LOQ) of 0.125 µM. Finally, the sensor was successfully used to determine VB6 in soft drink and pharmaceutical formulation samples.


Download data is not yet available.


R. Rejithamol, S. Beena, Electrochemical quantification of pyridoxine (VB6) in human blood from other water-soluble vitamins, Chemical Papers 74 (2020) 2011-2020. https://doi.org/10.1007/s11696-019-01049-5

N. Alpar, P. T. Pınar, Y. Yardım, Z. Şentürk, Voltammetric method for the simultaneous determination of melatonin and pyridoxine in dietary supplements using a cathodically pretreated boron‐doped diamond electrode, Electroanalysis 29 (2017) 1691-1699. https://doi.org/10.1002/elan.201700077

V. Sharma, G. K. Jayaprakas, Fabrications of electrochemical sensors based on carbon paste electrode for vitamin detection in real samples, Journal of Electrochemical Science and Engineering 12 (2022) 421-430. https://doi.org/10.5599/jese.1313

E. Dokur, O. Gorduk, Y. Sahin, Cost‐effective and facile production of a phosphorus‐doped graphite electrode for the electrochemical determination of pyridoxine, Electroanalysis 33 (2021) 1657-1667. https://doi.org/10.1002/elan.202100038

T. T. Calam, A novel, efficient and sensitive method for the simultaneous determination of riboflavin (vitamin B2) and pyridoxine hydrochloride (vitamin B6) in food and pharmacological samples using an electrochemical sensor based on 4, 4′-diamino benzophenone, Microchemical Journal 169 (2021) 106557. https://doi.org/10.1016/j.microc.2021.106557

M. Yaman, Determination and evaluation in terms of healthy nutrition of the pyridoxal, pyridoxine and pyridoxamine forms of vitamin B6 in animal-derived foods, European Journal of Science and Technology 15 (2019) 611-617. https://doi.org/10.31590/ejosat.540894

S. Z. A. Köseoğlu, Determination and evaluation of the pyridoxal, pyridoxine, and pyridoxamine forms of vitamin B-6 in plant-based foods in terms of healthy vegetarian nutrition, Progress in Nutrition 22 (2020) e2020015. https://doi.org/10.23751/pn.v22i3.8509

S. Sel, E. Öztürk Er, S. Bakırdere, Simultaneous determination of niacin and pyridoxine at trace levels by using diode array high‐performance liquid chromatography and liquid chromatography with quadrupole time‐of‐flight tandem mass spectrometry, Journal of Separation Science 40 (2017) 4740-4746. https://doi.org/10.1002/jssc.201700933

L. J. Nunez-Vergara, J. A. Squella, J. C. Sturm, H. Baez, C. Camargo, Simultaneous determination of melatonin and pyridoxine in tablets by gas chromatography-mass spectrometry, Journal of Pharmaceutical and Biomedical Analysis 26 (2001) 929-938. https://doi.org/10.1016/S0731-7085(01)00447-2

M. J. Chaichi, M. Ehsani, S. Asghari, V. Behboodi, Determination of vitamin B6 using an optimized novel TCPO–indolizine–H2O2 chemiluminescence system, Luminescence 29 (2014) 1169-1176. https://doi.org/10.1002/bio.2678

I. Cizmarova, M. Matuskova, O. Stefanik, A. Horniakova, P. Mikus, J. Piestansky, Determination of thiamine and pyridoxine in food supplements by a green ultrasensitive two-dimensional capillary electrophoresis hyphenated with mass spectrometry, Chemical Papers 76 (2022) 6235-6245. https://doi.org/10.1007/s11696-022-02309-7

M. Khateeb, B. Elias, F. A. Rahal, Validated spectrophotometric method to Assay of B6 and B3 vitamins in pharmaceutical forms using potassium iodide and potassium iodate, International Letters of Chemistry, Physics and Astronomy 60 (2015) 113-119. https://doi.org/10.18052/www.scipress.com/ILCPA.60.113

R. S. Kumar, G. K. Jayaprakash, S. Manjappa, M. Kumar, A. P. Kumar, Theoretical and electrochemical analysis of L-serine modified graphite paste electrode for dopamine sensing applications in real samples, Journal of Electrochemical Science and Engineering 12 (2022) 1243-1250. https://doi.org/10.5599/jese.1390

A. Lohrasbi Nejad, Electrochemical strategies for detection of diazinon, Journal of Electrochemical Science and Engineering 12 (2022) 1041-1059. https://doi.org/10.5599/jese.1379

P. S. Ganesh, B. K. Swamy, O. E. Fayemi, E. S. M. Sherif, E. E. Ebenso, Poly (crystal violet) modified pencil graphite electrode sensor for the electroanalysis of catechol in the presence of hydroquinone, Sensing and Bio-Sensing Research 20 (2018) 47-54. https://doi.org/10.1016/j.sbsr.2018.08.001

M. C. Monteiro, J. P. Winiarski, E. R. Santana, B. Szpoganicz, I. C. Vieira, Ratiometric electrochemical sensor for butralin determination using a quinazoline-engineered prussian blue analogue, Materials 16 (2023) 1024. https://doi.org/10.3390/ma16031024

S. Tajik, Y. Orooji, F. Karimi, Z. Ghazanfari, H. Beitollahi, M. Shokouhimehr, H. W. Jang (2021). High performance of screen-printed graphite electrode modified with Ni–Mo-MOF for voltammetric determination of amaranth, Journal of Food Measurement and Characterization 15 (2021) 4617-4622. https://doi.org/10.1007/s11694-021-01027-0

P. Li, Z. Liu, Z. Yan, X. Wang, E. M. Akinoglu, M. Jin, G. Zhou, L. Shui, An electrochemical sensor for determination of vitamin B2 and B6 based on AuNPs@ PDA-RGO modified glassy carbon electrode, Journal of The Electrochemical Society 166 (2019) B821. DOI 10.1149/2.1281910jes

L. S. Porto, D. N. da Silva, M. C. Silva, A. C. Pereira, Electrochemical sensor based on multi‐walled carbon nanotubes and cobalt phthalocyanine composite for pyridoxine determination, Electroanalysis 31 (2019) 820-828. https://doi.org/10.1002/elan.201800789

H. Sadeghi, S. A. Shahidi, S. N. Raeisi, A. Ghorbani-HasanSaraei, F. Karimi, Electrochemical determination of vitamin B6 in water and juice samples using an electrochemical sensor amplified with NiO/CNTs and Ionic liquid, International Journal of Electrochemical Science 15 (2020) 10488-10498. https://doi.org/10.20964/2020.10.51

G. Tigari, J. G. Manjunatha, Electrochemical preparation of poly (arginine)-modified carbon nanotube paste electrode and its application for the determination of pyridoxine in the presence of riboflavin: an electroanalytical approach, Journal of Analysis and Testing 3 (2019) 331-340. https://doi.org/10.1007/s41664-019-00116-w

A. Mekonnen, R. C. Saini, A. Tadese, R. Pal, Square wave voltammetric determination of pyridoxine in pharmaceutical preparations using cobalthexacyanoferrate modified carbon paste electrode, Journal of Chemical and Pharmaceutical Research 6 (2014) 544-551.

M. Motaghedifard, M. Behpour, S. M. Ghoreishi, E. Honarmand, Electro-deposition of gold nanostructures on carbon paste electrode: a platform with signal amplification for voltammetric study and determination of pyridoxine (vitamin B6), Russian Journal of Electrochemistry 52 (2016) 477-487. https://doi.org/10.1134/S1023193516050098

G. K. Jayaprakash, R. Flores-Moreno, B. E. K. Swamy, K. Mohanty, P. Dhiman, Pre/post electron transfer regioselectivity at glycine modified graphene electrode interface for voltammetric sensing applications, Journal of Electrochemical Science and Engineering 12 (2022) 1001-1008. https://doi.org/10.5599/jese.1438

Z. Guo, G. Wang, J. Li, D. Wu, X. Guo, A miniaturized electrochemical biosensor based on poly (L-threonine) modified pencil graphite electrodes and its application for trace-level determination of uric acid, xanthine and hypoxanthine, International Journal of Electrochemical Science 16 (2021) 210262. https://doi.org/10.20964/2021.01.05

P. Naderi, F. Jalali, Poly-L-serine/AuNPs/MWCNTs as a Platform for Sensitive Voltammetric Determination of Progesterone, Journal of The Electrochemical Society 167 (2020) 027524. https://doi.org/10.1149/1945-7111/ab6a7f

S. B. Konnur, S. T. Nandibewoor, Electrochemical behavior of 2-Aminothiazole at poly glycine modified pencil graphite electrode, Analytical and Bioanalytical Electrochemistry 12 (2020) 208-222.

Y. Zhao, Y. Du, D. Lu, L. Wang, D. Ma, T. Ju, M. Wu, Sensitive determination of vanillin based on an arginine functionalized graphene film, Analytical Methods 6 (2014) 1753-1758. https://doi.org/10.1039/C3AY41517A

G. K. Jayaprakash, Pre-post redox electron transfer regioselectivity at the alanine modified nano graphene electrode interface, Chemical Physics Letters 789 (2022) 139295. https://doi.org/10.1016/j.cplett.2021.139295

N. Hareesha, J. G. Manjunatha, A simple and low-cost poly (DL-phenylalanine) modified carbon sensor for the improved electrochemical analysis of Riboflavin, Journal of Science: Advanced Materials and Devices 5 (2020) 502−511. https://doi.org/10.1016/j.jsamd.2020.08.005

S. K. Revanappa, I. Soni, M. Siddalinganahalli, G. K. Jayaprakash, R. Flores-Moreno, C. Bananakere Nanjegowda, A Fukui analysis of an arginine-modified carbon surface for the electrochemical sensing of dopamine, Materials 15 (2022) 6337. DOI: 10.3390/ma15186337

X. Ma, M. Chao, Electrocatalytic determination of maltol in food products by cyclic voltammetry with a poly (l-phenylalanine) modified electrode, Analytical Methods 5 (2013) 5823-5829. https://doi.org/10.1039/C3AY41142G

L. Wang, P. Huang, J. Bai, H. Wang, L. Zhang, Y. Zhao, Simultaneous electrochemical determination of phenol isomers in binary mixtures at a poly (phenylalanine) modified glassy carbon electrode, International Journal of Electrochemical Science 1 (2006) 403-413.

S. Tahtaisleyen, O. Gorduk, Y. Sahin, Electrochemical determination of tartrazine using a graphene/poly (L-phenylalanine) modified pencil graphite electrode, Analytical Letters 53 (2020) 1683-1703. https://doi.org/10.1080/00032719.2020.1716242

M. Chao, X. Ma, Convenient electrochemical determination of sunset yellow and tartrazine in food samples using a poly (L-phenylalanine)-modified glassy carbon electrode, Food Analytical Methods 8 (2015) 130-138. https://doi.org/10.1007/s12161-014-9879-6

S. Piña, C. Candia-Onfray, N. Hassan, P. Jara-Ulloa, D. Contreras, R. Salazar, Glassy carbon electrode modified with C/Au nanostructured materials for simultaneous determination of hydroquinone and catechol in water matrices, Chemosensors 9 (2021) 88. https://doi.org/10.3390/chemosensors9050088

T. Rohani, M. A. Taher, Novel functionalized multi-walled carbon nanotube-glassy carbon electrode for simultaneous determination of ascorbic acid and uric acid, Arabian Journal of Chemistry 11 (2018) 214-220. https://doi.org/10.1016/j.arabjc.2014.12.039

A. M. Díez-Pascual, Chemical functionalization of carbon nanotubes with polymers: a brief overview, Macromol 1 (2021) 64-83. https://doi.org/10.3390/macromol1020006

O. Salhi, T. Ez-Zine, L. Oularbi, M. El Rhazi, Electrochemical sensing of nitrite ions using modified electrode by Poly 1, 8-diaminonaphthalene/functionalized multi-walled carbon nanotubes, Frontiers in Chemistry 10 (2022) 870393. https://doi.org/10.3389/fchem.2022.870393

G. Tesfaye, N. Negash, M. Tessema, Reduced Graphene Oxide and Poly (phenylalanine) Composite Modified Electrode for the Electrochemical Determination of Vanillin, Journal of The Electrochemical Society 169 (2022) 127503. https://doi.org/10.1149/1945-7111/aca561

P. S. Ganesh, B. E. K. Swamy, O. E. Feyami, E. E. Ebenso, Interference free detection of dihydroxybenzene isomers at pyrogallol film coated electrode: A voltammetric method, Journal of Electroanalytical Chemistry 813 (2018) 193-199. https://doi.org/10.1016/j.jelechem.2018.02.018

S. Tajik, H. Beitollahi, A sensitive chlorpromazine voltammetric sensor based on graphene oxide modified glassy carbon electrode, Analytical and Bioanalytical Chemistry Research 6 (2019) 171-182. https://doi.org/10.22036/ABCR.2018.89229.1154

P. L. Wang, X. Liu, Q. Q. Hu, H. Gao, W. Ma, Simple and rapid determination of tartrazine using poly (l-arginine)/electrochemically reduced graphene oxide modified glassy carbon electrode, International Journal of Electrochemical Science 15 (2020) 8901-8912. https://doi.org/10.20964/2020.09.83

A. B. Monnappa, J. G. Manjunatha, A. S. Bhatt, H. Nagarajappa, Sensitive and selective electrochemical detection of vanillin at graphene-based poly (methyl orange) modified electrode, Journal of Science: Advanced Materials and Devices 6 (2021) 415-424. https://doi.org/10.1016/j.jsamd.2021.05.002

S. Jampasa, W. Siangproh, K. Duangmal, O. Chailapakul, Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages, Talanta 160 (2016) 113-124. https://doi.org/10.1016/j.talanta.2016.07.011

H. Lian, W. Qian, L. Estevez, H. Liu, Y. Liu, T. Jiang, K. Wang, W. Guo, E. P. Giannelis, Enhanced actuation in functionalized carbon nanotube–Nafion composites, Sensors and Actuators B: Chemical 156 (1) (2011) 187-193. https://doi.org/10.1016/j.snb.2011.04.012

X. Liu, L. Luo, Y. Ding, D. Ye, Poly-glutamic acid modified carbon nanotube-doped carbon paste electrode for sensitive detection of L-tryptophan, Bioelectrochemistry 82 (2021) 38-45. https://doi.org/10.1016/j.bioelechem.2011.05.001

M. M. Barsan, M. E. Ghica, C. M. Brett, Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review, Analytica Chimica Acta 881 (2015) 1-23. https://doi.org/10.1016/j.aca.2015.02.059

R. Porada, K. Fendrych, B. Baś, Electrochemical sensor based on Ni-exchanged natural zeolite/carbon black hybrid nanocomposite for determination of vitamin B6, Microchimica Acta 188 (2021) 323. https://doi.org/10.1007/s00604-021-04992-x

E. Laviron , General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 101 (1979) 19-28. https://doi.org/10.1016/S0022-0728(79)80075-3

J. T. Bagalkoti, S. T. Nandibewoor, Modification of glassy carbon electrode by polybromocresol using cyclic voltammetry as a sensor and its analytical applications in determination of pyridoxine hydrochloride in commercial drinks, Analytical and Bioanalytical Electrochemistry 10 (2018) 1144-1162.

P. S. Ganesh, S. Y. Kim, D. S. Choi, S. Kaya, G. Serdaroğlu, G. Shimoga, S. H. Lee (2021). Electrochemical investigations and theoretical studies of biocompatible niacin-modified carbon paste electrode interface for electrochemical sensing of folic acid, Journal of Analytical Science and Technology, 12 (2021) 47. https://doi.org/10.1186/s40543-021-00301-6

M. M. Barsan, C. T. Toledo, C. M. Brett, New electrode architectures based on poly (methylene green) and functionalized carbon nanotubes: Characterization and application to detection of acetaminophen and pyridoxine, Journal of Electroanalytical Chemistry 736 (2015) 8-15. https://doi.org/10.1016/j.jelechem.2014.10.026

D. R. Kumar, D. Manoj, J. Santhanalakshmi, J. J. Shim, Au-CuO core-shell nanoparticles design and development for the selective determination of vitamin B6, Electrochimica Acta 176 (2015) 514-522. https://doi.org/10.1016/j.electacta.2015.07.034

S. M. Cottica, J. Nozaki, H. S. Nakatani, C. C. Oliveira, N. E. Souza, J. V. Visentainer, Voltammetric determination of pyridoxine (vitamin B6) in drugs using a glassy carbon electrode modified with chromium (III) hexacyanoferrate (II), Journal of the Brazilian Chemical Society 20 (2009) 496-501. https://doi.org/10.1590/S0103-50532009000300014

E. C. Martins, E. R. Santana, A. Spinelli, Nitrogen and sulfur co-doped graphene quantum dot-modified electrode for monitoring of multivitamins in energy drinks, Talanta 252 (2023) 123836. https://doi.org/10.1016/j.talanta.2022.123836

D. F. Pereira, E. R. Santana, A. Spinelli, Electrochemical paper-based analytical devices containing magnetite nanoparticles for the determination of vitamins B2 and B6, Microchemical Journal 179 (2022) 107588. https://doi.org/10.1016/j.microc.2022.107588



How to Cite

Tesfaye, G., Tessema, M., & Negash, N. (2023). Electrochemical determination of vitamin B6 in pharmaceutical and energy drink samples: Original scientific paper. Journal of Electrochemical Science and Engineering, 13(2), 297–319. https://doi.org/10.5599/jese.1674



Electroanalytical chemistry