Synergistic of yeast Saccharomyces cerevisiae and glucose oxidase enzyme as co-biocatalyst of enzymatic microbial fuel cell (EMFC) in converting sugarcane bagasse extract into electricity
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1559Keywords:
Bioelectricity, fuel cells, enzymes, sustainable energy
Abstract
The microbial fuel cell (MFC) is an ecologically friendly alternative energy source. Due to the typically limited electron transfer in MFC systems, co-biocatalysts are necessary to enhance their performance. Enzymes are used as co-biocatalysts due to their superior ability to generate energy, and the system is known as an enzymatic microbial fuel cell (EMFC). One of the substrates that may be used is bagasse waste extracted from sugarcane. Saccharomyces cerevisiae and the enzyme glucose oxidase (GOx) serve as co-biocatalysts in the breakdown of sugarcane bagasse waste in this study, which uses single-chamber EMFCs. In EMFC using sugarcane bagasse waste extract employing S. cerevisiae biocatalyst and glucose oxidase enzyme co-biocatalyst, the open circuit voltage was 0.56 V and the maximum power density was 146.65 mW m-2, an increase of 10.4 times to MFCs that solely employed only yeast biocatalyst. In addition, the chemical oxygen demand (COD) reduction achieved by this technology is 75 %. In addition, the pH of sugarcane bagasse waste extract samples treated with Saccharomyces cerevisiae yeast and GOx enzyme decreased from 4.6 to 4.2. This research demonstrates that adding the co-biocatalyst GOx enzyme may boost the performance of the traditional yeast MFC.
Downloads
References
D. Pimentel, Implications for the Economy and Environment of Alternatives to Fossil-Fuel Energy, in: Peak Oil, Economic Growth, and Wildlife Conservation, J. E. Gates, D. L. Trauger, B. Czech (Eds.), Springer, New York, 2014, 63-82. https://doi.org/10.1007/978-1-4939-1954-3_3
B. E. Logan, Microbial fuel cells, John Wiley & Sons, 2008. ISBN: 9780470239483
T. H. Pham, K. Rabaey, P. Aelterman, P. Clauwaert, L. De Schamphelaire, N. Boon, W. Verstraete, Engineering in Life Sciences 6 (2006) 285-292. https://doi.org/10.1002/elsc.200620121
D. R. Lovley, Nature Reviews Microbiology 4 (2006) 497-508. https://doi.org/10.1038/nrmicro1442
P. Choudhury, R. Majumdar, & T.K. Bandyopadhyaya, Journal of Electrochemical Science and Engineering 11(4) (2021) 279-289. https://doi.org/10.5599/jese.1030
D. R. Negrao, A. Grandis, M. S. Buckeridge, G. J. Rocha, M. R. L. Leal, C. Driemeier, Renewable and Sustainable Energy Reviews 148 (2021) 111268. https://doi.org/10.1016/j.rser.2021.111268
D. Khatiwada, S. Silveira, Energy 119 (2017) 351-361. https://doi.org/10.1016/j.energy.2016.12.073
B. Fauziyah, M. Yuwono, I. Isnaeni, Annals of the Romanian Society for Cell Biology 25 (2021) 989-1001.
R. Embong, N. Shafiq, A. Kusbiantoro, M. F. Nuruddin, Journal of Cleaner Production 112 (2016) 953-962. https://doi.org/10.1016/j.jclepro.2015.09.066
S. Norsuraya, H. Fazlena, R. Norhasyimi, Procedia Engineering 148 (2016) 839-846. https://doi.org/10.1016/j.proeng.2016.06.627
S. H. Khatami, O. Vakili, N. Ahmadi, E. Soltani Fard, P. Mousavi, B. Khalvati, A. Maleksabet, A. Savardashtaki, M. Taheri-Anganeh, A. Movahedpour, Biotechnology and Applied Biochemistry, 69 (2022) 939-950. https://doi.org/10.1002/bab.2165
N. Mano, Bioelectrochemistry 128 (2019) 218-240. https://doi.org/10.1016/j.bioelechem.2019.04.015
M. Christwardana, Y. Chung, Y. Kwon, Nanoscale 9 (2017) 1993-2002. https://doi.org/10.1039/C6NR09103B
M. Christwardana, Y. Chung, D. H. Kim, Y. Kwon, Journal of Industrial and Engineering Chemistry 71 (2019) 435-444. https://doi.org/10.1016/j.jiec.2018.11.056
G. Kovačević, R. G. A. Elgahwash, M. Blažić, N. Pantić, O. Prodanović, A. M. Balaž, R. Prodanović, Molecular Catalysis 522 (2022) 112215. https://doi.org/10.1016/j.mcat.2022.112215
K. Bahartan, L. Amir, A. Israel, R. G. Lichtenstein, L. Alfonta, ChemSusChem 5 (2012) 1820-1825. https://doi.org/10.1002/cssc.201200063
K. Bahartan, J. Gun, S. Sladkevich, P. V. Prikhodchenko, O. Lev, L. Alfonta, Chemical Communications 48 (2012) 11957-11959. https://doi.org/10.1039/C2CC36959A
M. Christwardana, J. Joelianingsih, L. A. Yoshi, Bulletin of Chemical Reaction Engineering & Catalysis 16 (2021) 446-458. https://doi.org/10.9767/bcrec.16.3.9739.446-458
M. Christwardana, D. Frattini, G. Accardo, S. P. Yoon, Y. Kwon, Applied Energy, 222 (2018) 369-382. https://doi.org/10.1016/j.apenergy.2018.03.193
M. Christwardana, D. Frattini, G. Accardo, S. P. Yoon, Y. Kwon, Journal of Power Sources 396 (2018) 1-11. https://doi.org/10.1016/j.jpowsour.2018.06.005
M. Christwardana, D. Frattini, G. Accardo, S. P. Yoon, Y. Kwon, Journal of Power Sources 402 (2018) 402-412. https://doi.org/10.1016/j.jpowsour.2018.09.068
H. Feldmann, Yeast Molecular Biology: A Short Compendium on Basic Features and Novel Aspects, Munchen: Adolf Butenandt Institut, 2005.
B. B. Buchanan, W. Gruissem, R. L. Jones, (Eds.). Biochemistry and Molecular Biology of Plants, John Wiley & sons. 2015. ISBN: 9780470714218.
Y. Hubenova, M. Mitov, Bioelectrochemistry 106 (2015) 177-185. https://doi.org/10.1016/j.bioelechem.2015.04.001
M. H. Kabir, E. Marquez, G. Djokoto, M. Parker, T. Weinstein, W. Ghann, + 8 authors, J. Cramer, ACS Applied Materials & Interfaces 14 (2022) 24229-24244. https://doi.org/10.1021/acsami.1c25211
Y. Liu, J. Zhang, Y. Cheng, S. P. Jiang, ACS Omega 3 (2018) 667-676. https://doi.org/10.1021/acsomega.7b01633
H. Hadiyanto, M. Christwardana, C. da Costa, Energy Sources A, Utilization, and Environmental Effects (2019). https://doi.org/10.1080/15567036.2019.1668085
Y. Chung, M. Christwardana, D. C. Tannia, K. J. Kim, Y. Kwon, Journal of Power Sources 360 (2017) 172-179. https://doi.org/10.1016/j.jpowsour.2017.06.012
S. B. Bankar, M. V. Bule, R. S. Singhal, L. Ananthanarayan, Biotechnology Advances 27 (2009) 489-501. https://doi.org/10.1016/j.biotechadv.2009.04.003
M. Christwardana, Enzyme and Microbial Technology 106 (2017) 1-10. https://doi.org/10.1016/j.enzmictec.2017.06.012
H. Liu, S. Cheng, L. Huang, B. E. Logan, Journal of Power Sources 179 (2008) 274-279. https://doi.org/10.1016/j.jpowsour.2007.12.120
M. Rahimnejad, A. Adhami, S. Darvari, A. Zirepour, S. E. Oh, Alexandria Engineering Journal 54 (2015) 745-756. https://doi.org/10.1016/j.aej.2015.03.031
C. Santoro, C. Arbizzani, B. Erable, I. Ieropoulos, Journal of Power Sources 356 (2017) 225-244. https://doi.org/10.1016/j.jpowsour.2017.03.109
E. T. Sayed, T. Tsujiguchi, N. Nakagawa, Bioelectrochemistry 86 (2012) 97-101. https://doi.org/10.1016/j.bioelechem.2012.02.001
F. Rezaei, D. Xing, R. Wagner, J. M. Regan, T. L. Richard, B. E. Logan, Applied and Environmental Microbiology 75 (2009) 3673-3678. https://doi.org/10.1128/AEM.02600-08
M. Pal, A. Shrivastava, R. K. Sharma, Materials Today: Proceedings 43 (2021) 2979-2984. https://doi.org/10.1016/j.matpr.2021.01.327
S. H. Hassan, A. Z. Abd el Nasser, R. M. Kassim, Energy 178 (2019) 538-543. https://doi.org/10.1016/j.energy.2019.04.087
R. Žalnėravičius, A. Paškevičius, U. Samukaitė-Bubnienė, S. Ramanavičius, M. Vilkienė, I. Mockevičienė, A. Ramanavičius, Biosensors 12 (2022) 113. https://doi.org/10.3390/bios12020113
U. Abbasi, W. Jin, A. Pervez, Z. A. Bhatti, M. Tariq, S. Shaheen, A. Iqbad, Q. Mahmood, Bioresource Technology 200 (2016) 1-7. https://doi.org/10.1016/j.biortech.2015.09.088
S. Dashko, N. Zhou, C. Compagno, J. Piškur, FEMS Yeast Research 14 (2014) 826-832. https://doi.org/10.1111/1567-1364.12161
A. K. Prabowo, A. P. Tiarasukma, M. Christwardana, D. Ariyanti, International Journal of Renewable Energy Development 5 (2016) 107-112. https://doi.org/10.14710/ijred.5.2.107-112
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi
Grant numbers 163/E4.1/AK.04.PT/2021