Synthesis of ammonia from water and nitrogen using a compo-site cathode based on La0.6Ba0.4Fe0.8Cu0.2O3-δ-Ce0.8Gd0.18Ca0.02O2-δ

Original scientific paper

Authors

DOI:

https://doi.org/10.5599/jese.1535

Keywords:

Ammonia production, electrosynthesis, electrocatalyst, perovskite oxide, oxide-carbonate composite electrolyte
Graphical Abstract

Abstract

Carbon-free electrochemical synthesis of ammonia is a promising technology for CO2 emission reduction. This study aims to explore the electrocatalytic activity of A-site Ba-doped perovskite cathode catalyst (La0.6Ba0.4Fe0.8Cu0.2O3-δ, LBFCu) for ammonia synthesis from water and nitrogen. LBFCu was prepared via the sol-gel method using combined EDTA-citrate complexing agents and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Ammonia was successfully synthesised from water and nitrogen under atmospheric pressure, and LBFCu mixed with Ce0.8Gd0.18Ca0.02O2-δ (CGDC) was used as a cathode. When a voltage was applied to the cell containing CGDC-carbonate composite solid electrolyte, ammonia formation was observed at 375, 400, 425 and 450 °C. At 400 °C and 1.4 V, the maximum rate of ammonia production was achieved at 4.0×10-11 mol s-1 cm-2, which corresponds to Faradaic efficiency of ~ 0.06 % at the current density of 19 mA cm-2. According to the findings, the synthesis of ammonia directly from water and nitrogen may be considered a promising green synthesis technology.

Downloads

Download data is not yet available.

References

S. Ghavam, M. Vahdati, I. Wilson, P. Styring, Sustainable ammonia production processes, Frontiers in Energy Research 9 (2021) 580808. https://doi.org/10.3389/fenrg.2021.580808

Mineral Commodity Summaries 2020, U.S. Geological Survey, 2020. p. 200. https://doi.org/10.3133/mcs2020

M. Appl, Ammonia: Principles and Industrial Practice, Wiley-VCH, 1999. ISBN: 3527295933

I. Rafiqul, C. Weber, B. Lehmann, A. Voss, Energy efficiency improvements in ammonia production-perspectives and uncertainties, Energy 30 (2005) 2487-2504. https://doi.org/10.1016/j.energy.2004.12.004

R. Michalsky, P. H. Pfromm, Chromium as reactant for solar thermochemical synthesis of ammonia from steam, nitrogen, and biomass at atmospheric pressure, Solar Energy 85 (2011) 2642-2654. https://doi.org/10.1016/j.solener.2011.08.005

C. Kurien, M. Mittal, Review on the production and utilization of green ammonia as an alternate fuel in dual-fuel compression ignition engines, Energy Conversion and Management 251 (2022) 114990. https://doi.org/10.1016/j.enconman.2021.114990

Y. Tanabe, Y. Nishibayashi, Developing more sustainable processes for ammonia synthesis, Coordination Chemistry Reviews 257 (2013) 2551-2564. https://doi.org/10.1016/j.ccr.2013.02.010

G. Marnellos, M. Stoukides, Ammonia synthesis at atmospheric pressure, Science 282 (1998) 98-100. https://doi.org/10.1126/science.282.5386.98

I. A. Amar, R. Lan, C. T. G. Petit, S. Tao, Solid-state electrochemical synthesis of ammonia: a review, Journal of Solid State Electrochemistry 15 (2011) 1845-1860. https://doi.org/10.1007/s10008-011-1376-x

S. Giddey, S. P. S. Badwal, A. Kulkarni, Review of electrochemical ammonia production technologies and materials, International Journal of Hydrogen Energy 38 (2013) 14576-14594. https://doi.org/10.1016/j.ijhydene.2013.09.054

I. Garagounis, A. Vourros, D. Stoukides, D. Dasopoulos, M. Stoukides, Electrochemical synthesis of ammonia: Recent efforts and future outlook, Membranes 9 (2019) 112. https://doi.org/10.3390/membranes9090112

C. Zhang, Z. Wang, J. Lei, L. Ma, B.I. Yakobson, J. M. Tour, Atomic molybdenum for synthesis of ammonia with 50 % faradic efficiency, Small 18 (2022) 2106327. https://doi.org/10.1002/smll.202106327

J. Xia, H. Guo, M. Cheng, C. Chen, M. Wang, Y. Xiang, T. Li, E. Traversa, Electrospun zirconia nanofibers for enhancing the electrochemical synthesis of ammonia by artificial nitrogen fixation, Journal of Materials Chemistry A 9 (2021) 2145-2151. https://doi.org/10.1039/d0ta08089f

S. Ye, Z. Chen, G. Zhang, W. Chen, C. Peng, X. Yang, L. Zheng, Y. Li, X. Ren, H. Cao, D. Xue, J. Qiu, Q. Zhang, J. Liu, Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide, Energy & Environmental Science 15 (2022) 760-770. https://doi.org/10.1039/d1ee03097c

V. C. D. Graça, F. J. A. Loureiro, L. I. V. Holz, S. M. Mikhalev, A. J. M. Araújo, D. P. Fagg, Electrochemical ammonia synthesis: Mechanism, recent developments, and challenges in catalyst design, Heterogeneous Catalysis (2022) 497-514. https://doi.org/10.1016/B978-0-323-85612-6.00018-8

T. Wu, W. Fan, Y. Zhang, F. Zhang, Electrochemical synthesis of ammonia: Progress and challenges, Materials Today Physics 16 (2021) 100310. https://doi.org/10.1016/j.mtphys.2020.100310

G. Soloveichik, Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process, Nature Catalysis 2 (2019) 377-380. https://doi.org/10.1038/s41929-019-0280-0

J. Yang, W. Weng, W. Xiao, Electrochemical synthesis of ammonia in molten salts, Journal of Energy Chemistry 43 (2020) 195-207. https://doi.org/10.1016/j.jechem.2019.09.006

Y. Yao, J. Wang, U.B. Shahid, M. Gu, H. Wang, H. Li, M. Shao, Electrochemical synthesis of ammonia from nitrogen under mild conditions: Current status and challenges, Electro-chemical Energy Reviews 3 (2020) 239-270. https://doi.org/10.1007/s41918-019-00061-3

I. A. Amar, R. Lan, C. T. G. Petit, S. Tao, Electrochemical synthesis of ammonia aased on Co3Mo3N catalyst and LiAlO2-(Li,Na,K)2CO3 composite electrolyte, Electrocatalysis 6 (2015) 286-294. https://doi.org/10.1007/s12678-014-0242-x

W. B. Wang, X. B. Cao, W. J. Gao, F. Zhang, H. T. Wang, G. L. Ma, Ammonia synthesis at atmospheric pressure using a reactor with thin solid electrolyte BaCe0.85Y0.15O3−α membrane, Journal of Membrane Science 360 (2010) 397-403. https://doi.org/10.1016/j.memsci.2010.05.038

E. Vasileiou, V. Kyriakou, I. Garagounis, A. Vourros, A. Manerbino, W. G. Coors, M. Stoukides, Electrochemical enhancement of ammonia synthesis in a BaZr0.7Ce0.2Y0.1O2.9 solid electrolyte cell, Solid State Ionics 288 (2016) 357-362. https://doi.org/10.1016/j.ssi.2015.12.022

S. Dutta, A review on production, storage of hydrogen and its utilization as an energy resource, Journal of Industrial and Engineering Chemistry 20 (2014) 1148-1156. https://doi.org/10.1016/j.jiec.2013.07.037

T. Murakami, T. Nohira, T. Goto, Y. H. Ogata, Y. Ito, Electrolytic ammonia synthesis from water and nitrogen gas in molten salt under atmospheric pressure, Electrochimica Acta 50 (2005) 5423-5426. https://doi.org/10.1016/j.electacta.2005.03.023

A. Skodra, M. Stoukides, Electrocatalytic synthesis of ammonia from steam and nitrogen at atmospheric pressure, Solid State Ionics 180 (2009) 1332-1336. https://doi.org/10.1016/j.ssi.2009.08.001

I. A. Amar, M. M. Ahwidi, Electrocatalytic activity of CoFe1.9Mo0.1O4-Ce0.8Gd0.18Ca0.02O2-δ composite cathode for ammonia synthesis from water and nitrogen, World Journal of Engineering 18 (2021) 490-496. https://doi.org/10.1108/wje-07-2020-0270

I. A. Amar, C. T. G. Petit, G. Mann, R. Lan, P. J. Skabara, S. W. Tao, Electrochemical synthesis of ammonia from N2 and H2O based on (Li,Na,K)2CO3-Ce0.8Gd0.18Ca0.02O2-δ composite electrolyte and CoFe2O4 cathode, International Journal of Hydrogen Energy 39 (2014) 4322-4330. https://doi.org/10.1016/j.ijhydene.2013.12.177

D. S. Yun, J. H. Joo, J. H. Yu, H. C. Yoon, J. N. Kim, C. Y. Yoo, Electrochemical ammonia syn-thesis from steam and nitrogen using proton conducting yttrium doped barium zirconate electrolyte with silver, platinum, and lanthanum strontium cobalt ferrite electrocatalyst, Journal of Power Sources 284 (2015) 245-251. https://doi.org/10.1016/j.jpowsour.2015.03.002

G. Pecchi, M. Jiliberto, E. Delgado, L. Cadús, J. Fierro, Effect of B-site cation on the catalytic activity of La1−xCaxBO3 (B= Fe, Ni) perovskite-type oxides for toluene combustion, Journal of Chemical Technology and Biotechnology 86 (2011) 1067-1073. https://doi.org/10.1002/jctb.2611

S. Zhang, G. Duan, L. Qiao, Y. Tang, Y. Chen, Y. Sun, P. Wan, S. Zhang, Electrochemical ammonia synthesis from N2 and H2O catalyzed by doped LaFeO3 perovskite under mild conditions, Industrial and Engineering Chemistry Research 58 (2019) 8935-8939. https://doi.org/10.1021/acs.iecr.9b00833

Z. Shao, S. M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells, Nature 431 (2004) 170-173. https://doi.org/10.1038/nature02863

S. Presto, A. Barbucci, M. P. Carpanese, F. Han, R. Costa, M. Viviani, Application of La-doped SrTiO3 in advanced metal-supported solid oxide fuel cells, Crystals 8 (2018) 134. https://doi.org/https://doi.org/10.3390/cryst8030134

X. Yue, J. T. S. Irvine, (La,Sr)(Cr,Mn)O3/GDC cathode for high temperature steam electrolysis and steam-carbon dioxide co-electrolysis, Solid State Ionics 225 (2012) 131-135. https://doi.org/10.1016/j.ssi.2012.06.015

Y. Gan, J. Zhang, Y. Li, S. Li, K. Xie, J. T. S. Irvine, Composite oxygen electrode based on LSCM for steam electrolysis in a proton conducting solid oxide electrolyzer, Journal of The Electrochemical Society 159 (2012) F763-F767. https://doi.org/10.1149/2.018212jes

W. Cai, D. Cao, M. Zhou, X. Yan, Y. Li, Z. Wu, S. Lü, C. Mao, Y. Xie, C. Zhao, J. Yu, M. Ni, J. Liu, H. Wang, Sulfur-tolerant Fe-doped La0·3Sr0·7TiO3 perovskite as anode of direct carbon solid oxide fuel cells, Energy 211 (2020) 118958. https://doi.org/10.1016/j.energy.2020.118958

F. Kosaka, N. Noda, T. Nakamura, J. Otomo, In situ formation of Ru nanoparticles on

La1-xSrxTiO3-based mixed conducting electrodes and their application in electrochemical synthesis of ammonia using a proton-conducting solid electrolyte, Journal of Materials Science 52 (2017) 2825-2835. https://doi.org/10.1007/s10853-016-0573-5

I. A. Amar, R. Lan, S. Tao, Synthesis of ammonia directly from wet nitrogen using a redox stable La0.75Sr0.25Cr0.5Fe0.5O3−δ-Ce0.8Gd0.18Ca0.02O2−δ composite cathode, RSC Advances 5 (2015) 38977-38983. https://doi.org/10.1039/c5ra00600g

G. Xu, R. Liu, J. Wang, Electrochemical synthesis of ammonia using a cell with a Nafion mem¬brane and SmFe0.7Cu0.3−xNixO3 (x = 0-0.3) cathode at atmospheric pressure and lower temper¬ature, Science in China Series B 52 (2009) 1171-1175. https://doi.org/10.1007/s11426-009-0135-7

K. Akinlolu, B. Omolara, O. Kehinde, T. Shailendra, Synthesis and characterization of A site doped lanthanum based perovskite catalyst for the oxidation of soot, IOP Conference Series: Materials Science and Engineering 509 (2019) 012062. https://doi.org/10.1088/1757-899x/509/1/012062

Z. Dong, T. Xia, Q. Li, J. Wang, S. Li, L. Sun, L. Huo, H. Zhao, Addressing the origin of highly catalytic activity of A-site Sr-doped perovskite cathodes for intermediate-temperature solid oxide fuel cells, Electrochemistry Communications 140 (2022) 107341. https://doi.org/10.1016/j.elecom.2022.107341

J. A. Onrubia-Calvo, B. Pereda-Ayo, I. Cabrejas, U. De-La-Torre, J. R. González-Velasco, Ba-doped vs. Sr-doped LaCoO3 perovskites as base catalyst in diesel exhaust purification, Molecular Catalysis 488 (2020) 110913. https://doi.org/10.1016/j.mcat.2020.110913

I. A. Amar, R. Lan, J. Humphreys, S. Tao, Electrochemical synthesis of ammonia from wet nitrogen via a dual-chamber reactor using La0.6Sr0.4Co0.2Fe0.8O3−δ-Ce0.8Gd0.18Ca0.02O2−δ composite cathode, Catalysis Today 286 (2017) 51-56. https://doi.org/10.1016/j.cattod.2016.09.006

I. A. Amar, R. Lan, S. Tao, Electrochemical synthesis of ammonia directly from wet N2 using La0.6Sr0.4Fe0.8Cu0.2O3-δ-Ce0.8Gd0.18Ca0.02O2-δ composite catalyst, Journal of The Electrochemical Society 161 (2014) H350-H354. https://doi.org/10.1149/2.021406jes

W. Raróg-Pilecka, E. Miśkiewicz, L. Kępiński, Z. Kaszkur, K. Kielar, Z. Kowalczyk, Ammonia synthesis over barium-promoted cobalt catalysts supported on graphitised carbon, Journal of Catalysis 249 (2007) 24-33. https://doi.org/10.1016/j.jcat.2007.03.023

E. Truszkiewicz, W. Raróg-Pilecka, K. Schmidt-Szałowski, S. Jodzis, E. Wilczkowska, D. Łomot, Z. Kaszkur, Z. Karpiński, Z. Kowalczyk, Barium-promoted Ru/carbon catalyst for ammonia synthesis: State of the system when operating, Journal of Catalysis 265 (2009) 181-190. https://doi.org/10.1016/j.jcat.2009.04.024

H. Ronduda, M. Zybert, W. Patkowski, A. Ostrowski, P. Jodłowski, D. Szymański, L. Kępiński, W. Raróg-Pilecka, A high performance barium-promoted cobalt catalyst supported on magnesium–lanthanum mixed oxide for ammonia synthesis, RSC Advances 11 (2021) 14218-14228. https://doi.org/10.1039/d1ra01584b

S. Hagen, R. Barfod, R. Fehrmann, C.J.H. Jacobsen, H.T. Teunissen, I. Chorkendorff, Ammonia synthesis with barium-promoted iron–cobalt alloys supported on carbon, Journal of Catalysis 214 (2003) 327-335. https://doi.org/10.1016/S0021-9517(02)00182-3

Y. Ling, J. Yu, B. Lin, X. Zhang, L. Zhao, X. Liu, A cobalt-free Sm0.5Sr0.5Fe0.8Cu0.2O3-δ-Ce0.8Sm0.2O2-δ composite cathode for proton-conducting solid oxide fuel cells, Journal of Power Sources 196 (2011) 2631-2634. https://doi.org/10.1016/j.jpowsour.2010.11.017

H. Kim, Y.S. Chung, T. Kim, H. Yoon, J. G. Sung, H. K. Jung, W. B. Kim, L. B. Sammes, J. S. Chung, Ru-doped barium strontium titanates of the cathode for the electrochemical synthesis of ammonia, Solid State Ionics 339 (2019) 115010. https://doi.org/10.1016/j.ssi.2019.115010

L. Qiao, G. Duan, S. Zhang, Y. Ren, Y. Sun, Y. Tang, P. Wan, R. Pang, Y. Chen, A.G. Russell, M. Fan, Electrochemical ammonia synthesis catalyzed with a CoFe layered double hydroxide – A new initiative in clean fuel synthesis, Journal of Cleaner Production 250 (2020) 119525. https://doi.org/10.1016/j.jclepro.2019.119525

R. Genouel, C. Michel, N. Nguyen, F. Studer, M. Hervieu, B. Raveau, On the cubic perovskites La0.2Sr0.8Cu0.4M0.6O3−y (M = Co, Fe), Journal of Solid State Chemistry 119 (1995) 260-270. https://doi.org/10.1016/0022-4596(95)80040-V

A. C. Larson, R.B . Von Dreele, General structure analysis system (GSAS)(Report LAUR 86-748), Los Alamos, New Mexico: Los Alamos National Laboratory, 2004.

R. Lan, S. Tao, Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4+ mixed conducting electrolyte, RSC Advances 3 (2013) 18016-18021. https://doi.org/10.1039/C3RA43432J

V. Kordali, G. Kyriacou, C. Lambrou, Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell, Chemical Communications (2000) 1673-1674. https://doi.org/10.1039/b004885m

Downloads

Published

08-11-2022 — Updated on 08-11-2022

How to Cite

Amar, I. (2022). Synthesis of ammonia from water and nitrogen using a compo-site cathode based on La0.6Ba0.4Fe0.8Cu0.2O3-δ-Ce0.8Gd0.18Ca0.02O2-δ: Original scientific paper. Journal of Electrochemical Science and Engineering, 13(2), 393–405. https://doi.org/10.5599/jese.1535

Issue

Section

Electrochemical Engineering