Conducting polymer functionalized graphene-based electrochemical sensors for sensing pollutants in water
Review paper
DOI:
https://doi.org/10.5599/jese.1506Keywords:
Composites, voltammetry, sensing properties, water pollution
Abstract
Recent trends in electrochemical sensors based on conducting polymer functionalized graphene for the detection of pollutants in water are highlighted in this review. Graphene has been the subject of a lot of scientific research to be composited with conducting polymers. Researchers are interested in graphene and its variants because they have a lot of good qualities, like good electrical and mechanical properties and very high surface area. With this review, we intend to arouse interest in the important topic of graphene and conducting polymer nanocomposite that is making significant advances in electrochemical sensing, especially for sensing pollutants in water.
Downloads
References
Guidelines for Drinking-water Quality, 4th edition incorporating the 1st addendum, World Health Organization (Ed.), 2017, pp. 631. ISBN: 978-92-4-154995-0
X.-S. Zhu, C. Gao, J.-W. Choi, P.L. Bishopb, C.H. Ahn, On-chip generated mercury microelectrode for heavy metal ion detection, Lab on a Chip 5 (2005) 212-217. https://doi.org/10.1039/B410006A
X. Xuan, M.F. Hossain, J.Y. Park, A fully integrated and miniaturized heavy-metal-detection sensor based on micro-patterned reduced graphene oxide, Scientific Reports 6 (2016) 33125. http://doi.org/10.1038/srep33125
P. Podešva, I. Gablech, P. Neužil, Nanostructured gold microelectrode array for ultrasensitive detection of heavy metal contamination, Analytical Chemistry 90 (2018) 1161-1167. https://doi.org/10.1021/acs.analchem.7b03725
J. Bobacka, Electrochemical sensors for real-world applications, Journal of Solid State Electrochemistry 24 (2020) 2039-2040. https://doi.org/10.1007/s10008-020-04700-4
T. Gan, S. Hu, Electrochemical sensors based on graphene materials, Microchimica Acta 175 (2011) 1. https://doi.org/10.1007/s00604-011-0639-7
L. Neia, Milestones in the 50-year history of electrochemical oxygen sensor development, ECS Trans 2 (2007) 33-38. https://doi.org/10.1149/1.2409016
M.L. Hitchman, Measurement of Dissolved Oxygen, Wiley Interscience, New York, 1978, p. 99. ISBN: 0471038857
W. C. Lee, K. B. Kim, N. G. Gurudatt, K. Hussain, C. S. Choi, D. S. Park, Y. B. Shim, Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au-Ni alloy with conductive polymer, Biosensors and Bioelectronics 130 (2019) 48-54. https://doi.org/10.1016/j.bios.2019.01.028
A. Economou, S. K. Karapetis, G.-P. Nikoleli, D. P. Nikolelis, S. Bratakou, T. H. Varzakas, Enzyme based sensors, in: Advances in Food Diagnostics, Second Edition, F. Toldrá, L.M.L. Nollet (Eds.), J. Wiley & Sons, New York, 2017, pp. 231-250.
H.L. Thanh, K. Yukyung Y. Hyeonseok, Electrical and electrochemical properties of conducting polymers, Polymers 9 (2017) 150. https://doi.org/10.3390/polym9040150
H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x, Journal of the Chemical Society 16 (1977) 578-580. https://doi.org/10.1039/C39770000578
L. W. Carter, J. G. Hendricks, D. S. Bolley, D. S. Elastomer Reinforced with Modified Clay (Assigned to National Lead Co.). 1950. U. S. Pat. No. 2,531,396.
A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito, Synthesis of nylon 6-clay hybrid, Journal of Materials Research 8 (1993) 1179-1184. https://doi.org/10.1557/JMR.1993.1179
G. C. Chan, A. S. M. A. Haseeb, Recent trends and developments in graphene/conducting polymer nanocomposites chemiresistive sensors, Materials 13 (2020) 3311. https://doi.org/10.3390/ma13153311
M. H. Naveen, N. G. Gurudatt, Y. B. Shim, Applications of conducting polymer composites to electrochemical sensors: A review, Applied Materials Today 9 (2017) 419-433. https://doi.org/10.1016/j.apmt.2017.09.001
A. Marsden, D. Papageorgiou, C. Valles, A. Liscio, V. Palermo, M. A. Bissett, R. J. Young, I. Kinloch, 2D Materials 5 (2018) 032003. https://doi.org/10.1088/2053-1583/aac055
T. Vinod Kumar, M. Chandrasekaran, P. Mohanraj, R. Balasubramanian, R. Muraliraja, S. V. Shaisundaram, Fillers preparation for polymer composite and its properties, International Journal of Engineering and Technology 7 (2018) 212-217. https://doi.org/10.14419/ijet.v7i2.33.13889
Y. J. Kwon, J. B. Park, J. P. Jeon, J. Y. Hong, H. S. Park, J. U. Lee, A review of polymer composites based on carbon fillers for thermal management applications: design, preparation, and properties, Polymers 13 (2021) 1312. https://doi.org/10.3390/polym13081312
J. Yao, H. Wang, M. Chen, M. Yang, Recent advances in graphene-based nanomaterials: properties, toxicity and applications in chemistry, biology and medicine, Microchimica Acta 186 (2019) 395. https://doi.org/10.1007/s00604-019-3458-x
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669. https://doi.org/10.1126/science.1102896
M. J. McAllister, J. L. Li, D.H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme, K. Robert, Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite, Journal of the American Chemical Society 19 (2007) 4396-4404. https://doi.org/10.1021/cm0630800
N. O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, X. Duan, Graphene: an emerging electronic material, Advanced Materials 24 (2012) 5782-5825. https://doi.org/10.1002/adma.201201482
J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, A. Zettl, On the roughness of single- and bi-layer graphene membranes, Solid State Communications 143 (2007) 101-109. https://doi.org/10.1016/j.ssc.2007.02.047
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior thermal conductivity of single‐layer graphene, Nano Letters 8 (2008) 902-907 https://doi.org/10.1021/nl0731872
K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications 146 (2008) 351-355. https://doi.org/10.1016/j.ssc.2008.02.024
G. Shi, Y. Ding, H. Fang, Unexpectedly strong anion-π interactions on the graphene flakes, Journal of Computational Chemistry 33 (2012) 1328-1337. https://doi.org/10.1002/jcc.22964
X. L. Wang, S. X. Dou, C. Zhang, Zero-gap materials for future spintronics, electronics and optics, NPG Asia Materials 2 (2010) 31-38. https://doi.org/10.1038/asiamat.2010.7
S. K. Tiwari, S. Sahoo, W. Nannan, A. Huczko, Graphene research and their outputs: status and prospect, Journal of Science: Advanced Materials and Devices 5 (2020) 10-29. https://doi.org/10.1016/j.jsamd.2020.01.006
A. H. Castro Neto, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Reviews of Modern Physics 81 (2009) 109-162. https://doi.org/10.1103/RevModPhys.81.109
A. Zubiarrain-Laserna, P. Kruse, Review—graphene-based water quality sensors, Journal of The Electrochemical Society 167 (2020) 037539. https://doi.org/10.1149/1945-7111/ab67a5
H. Kumar, N. Kumari, R. Sharma, Nanocomposites (conducting polymer and nanoparticles) based electrochemical biosensor for the detection of environment pollutant: Its issues and challenges, Environmental Impact Assessment Review 85 (2020) 106438. https://doi.org/10.1016/j.eiar.2020.106438
O. Kanoun, T. Lazarević-Pašti, I. Pašti, S. Nasraoui, M. Talbi, A. Brahem, A. Adiraju, E. Sheremet, R. D. Rodruguez, M. B. Ali, A. Al-Hamry, A review of nanocomposite-modified electrochemical sensors for water quality monitoring, Sensors 21 (2021) 4131. https://doi.org/10.3390/s21124131
A. Terán-Alcocer, F. Bravo-Plascencia, C. Cevallos-Morillo, A. Palma-Cando, Electrochemical sensors based on conducting polymers for the aqueous detection of biologically relevant molecules, Nanomaterials 11 (2021) 252. https://doi.org/10.3390/nano11010252
G. De Alvarenga, B. M. Hryniewicz, I. Jasper, R.J. Silva, V. Klobukoski, F. S. Costa, T. N. M. Cervantes, C. D. B. Amaral, J. T. Schneider, L. Bach-Toledo, P. Peralta-Zamora, T. L. Valerio, F. Soares, S. Frederico, J. G. Bruno, M. Vidotti, Recent trends of micro and nanostructured conducting polymers in health and environmental applications, Journal of Electroanalytical Chemistry 879 (2020) 114754. https://doi.org/10.1016/j.jelechem.2020.114754
D. Li, T. Wang, Z. Li, X. Xu, C. Wang, Y. Duan, Application of graphene-based materials for detection of nitrate and nitrite in water—a review, Sensors 20 (2019) 54. https://doi.org/10.3390/s20010054
H. Wang, Polymer-based electrochemical sensing platform for heavy metal ions detection - a critical review, International Journal of Electrochemical Science 14 (2019) 8760-8771. https://doi.org/10.20964/2019.09.22
M.A. Deshmukh, M.D. Shirsat, A. Ramanaviciene, Composites based on conducting polymers and carbon nanomaterials for heavy metal ion sensing (review), Critical Reviews in Analytical Chemistry 48 (2018) 293-304. https://doi.org/10.1080/10408347.2017.1422966
B. C . Patel, G. R. Sinha, N. Goel, Introduction to Sensors in Advances in Modern Sensors, G. R. Sinha Ed., IOP Publishing Ltd, United Kingdom, 2020, pp. 1-21. https://iopscience.iop.org/book/edit/978-0-7503-2707-7/chapter/bk978-0-7503-2707-7ch1
N. R. Stradiotto, H. Yamanaka, M.V.B. Zanoni, Electrochemical sensors: a powerful tool in analytical chemistry, Journal of the Brazilian Chemical Society 14 (2003) 159-173. https://doi.org/10.1590/S0103-50532003000200003
A. Yavarinasab, M. Abedini, H. Tahmooressi, S. Janfaza, N. Tasnim, M. Hoorfar, Potentiodynamic Electrochemical Impedance Spectroscopy of Polyaniline-Modified Pencil Graphite Electrodes for Selective Detection of Biochemical Trace Elements, Polymers 14 (2022) 31. https://doi.org/10.3390/polym14010031
H. Karimi‐Maleh, F. Fatemeh, M. Alizadeh, A. L. Sanati, Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems, Chemical Record 20 (2019) 682-692. https://doi.org/10.1002/tcr.201900092
J. Giner, A practical reference electrode, Journal of the Electrochemical Society 111 (1964) 376-377. https://doi.org/10.1149/1.2426125
R. C. Alkire, C. W. Tobias, Advances in Electrochemical Science and Engineering, VCH Publishers Inc, New York, 2008, pp. 1-74.
D.W. Kimmel, G. LeBlanc, M.E. Meschievitz, D.E. Cliffel, Electrochemical sensors and biosensors, Journal of Analytical Chemistry 84 (2012) 685-707. https://doi.org/10.1021/ac202878q
K.K. Kasem, S. Jones, Platinum as a reference electrode in electrochemical measurements, Platinum Metals Review 52 (2008) 100-106. https://doi.org/10.1595/147106708x297855
Y. Song, C. Bian, J. Hu, Y. Li, J. Tong, J. Sun, G. Gao, S. Xia, Porous polypyrrole/graphene oxide functionalized with carboxyl composite for electrochemical sensor of trace cadmium (II), Journal of The Electrochemical Society 166 (2019) B95-B102. https://doi.org/10.1149/2.0801902jes
X. Guo, R. Cui, H. Huang, Y. Li, B. Liu, J. Wang, D. Zhao, J. Dong, B. Sun, Insights into the role of pyrrole doped in three-dimensional graphene aerogels for electrochemical sensing Cd(II), Journal of Electroanalytical Chemistry 871 (2020) 114323. https://doi.org/10.1016/j.jelechem.2020.114323
N. E. Eltayeb, A. Khan, Preparation and properties of newly synthesized Polyaniline@Graphene oxide/Ag nanocomposite for highly selective sensor application, Journal of Materials Research and Technology 9 (2020) 10459-10467. https://doi.org/10.1016/j.jmrt.2020.07.031
J. Wang, J. Hu, S. Hu, G. Gao, Y. Song, A novel electrochemical sensor based on electropolymerized ion imprinted PoPD/ERGO composite for trace Cd(II) determination in water, Sensors 20 (2020) 1004. https://doi.org/10.3390/s20041004
E. Aboobakri, M. Jahani, Graphene oxide/Fe3O4/polyaniline nanocomposite as an efficient adsorbent for the extraction and preconcentration of ultra-trace levels of cadmium in rice and tea samples, Research on Chemical Intermediates 46 (2020) 5181-5198. https://doi.org/10.1007/s11164-020-04256-y
S. A. Hashemi, S. Bahrani, S. M. Mousavi, N. Omidifar, M. Arjmand, K. B. Lankarani, S. Ramakrishna, Simultaneous electrochemical detection of Cd and Pb in aquatic samples via coupled graphene with brominated white polyaniline flakes, European Polymer Journal 162 (2022) 110926. https://doi.org/10.1016/j.eurpolymj.2021.110926
H. Dai, N. Wang, D. Wang, H. Ma, M. Lin, An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd(II) and Pb(II). Chemical Engineering Journal 299 (2016) 150-155. https://doi.org/10.1016/j.cej.2016.04.083
M. Akhtar, A. Tahir, S. Zulfiqar, F. Hanif, M. F. Warsi, P. O. Agboola, I. Shakir, Ternary hybrid of polyaniline-alanine-reduced graphene oxide for electrochemical sensing of heavy metal ions, Synthetic Metals 265 (2020) 116410. https://doi.org/10.1016/j.synthmet.2020.116410
R. S. Alruwais, W. A. Adeosun, H. M. Marwani, M. Jawaid, A. M. Asiri, A. Khan, Novel aminosilane (APTES)-grafted polyaniline@graphene oxide (PANI-GO) nanocomposite for electrochemical sensor, Polymers 13 (2021) 2562. https://doi.org/10.3390/polym13152562
R. Rong; H. Zhao, X. Gan, S. Chen, X. Quan, An electrochemical sensor based on graphene-polypyrrole nanocomposite for the specific detection of Pb (II), Nano 12 (2017) 1750008. https://doi.org/10.1142/S1793292017500084
V. Suvina, S. M. Krishna, D. H. Nagaraju, J. S. Melo, R. G. Balakrishna, Polypyrrole-reduced graphene oxide nanocomposite hydrogels: a promising electrode material for the simultaneous detection of multiple heavy metal ions, Materials Letters 232 (2018) 209-212. https://doi.org/10.1016/j.matlet.2018.08.096
C. Raril, J. G. Manjunatha, Fabrication of novel polymer-modified graphene-based electrochemical sensor for the determination of mercury and lead ions in water and biological samples, Journal of Analytical Science and Technology 11 (2020) 3. https://doi.org/10.1186/s40543-019-0194-0
M. O. Park, H. B. Noh, D. S. Park, J. H. Yoon, Y. B. Shim, Long-life heavy metal ions sensor based on graphene oxide-anchored conducting polymer, Electroanalysis 19 (2016) 514-520. https://doi.org/10.1002/elan.201600494
M. Mahadik. H. Patil, G. Bodkhe, N. Ingle. P. Sayyad, T. Al-gahaouri, S. Shirsat , M. D. Shirsat, EDTA modified PANI/GO composite based detection of Hg (II) ions. Frontiers in Materials 7 (2019) 81. https://doi.org/10.3389/fmats.2020.00081
Y. Zuo, J. Xu, X. Zhu, D. Xuemin, L. Lu, Y. Gao, H, Xing, T. Yang, G. Ye, Y. Yu, Poly(3,4-ethylenedioxythiophene) nanorods/graphene oxide nanocomposite as a new electrode material for the selective electrochemical detection of mercury (II), Synthetic Metals 220 (2016) 14-19. https://doi.org/10.1016/j.synthmet.2016.05.022
F. Saadati, F. Ghahramani, H. Shayani-jam, F. Piri, M. R. Yaftian, Synthesis and characterization of nanostructure molecularly imprinted polyaniline/graphene oxide composite as highly selective electrochemical sensor for detection of p -nitrophenol, Journal of the Taiwan Institute of Chemical Engineers 86 (2018) 213-221. https://doi.org/10.1016/j.jtice.2018.02.019
S. A. Hashemi, S. M. Mousavi, S. Bahrani, S. Ramakrishna, Integrated polyaniline with graphene oxide-iron tungsten nitride nanoflakes as ultrasensitive electrochemical sensor for precise detection of 4-nitrophenol within aquatic media, Journal of Electroanalytical Chemistry 873 (2020) 114406. https://doi.org/10.1016/j.jelechem.2020.114406
G. Chen, J. Zheng, Non-enzymatic electrochemical sensor for nitrite based on a graphene oxide-polyaniline-Au nanoparticles nanocomposite, Microchemical Journal 164 (2021) 106034. https://doi.org/10.1016/j.microc.2021.106034
M. F. Umar, A. Nasar, Reduced graphene oxide/polypyrrole/nitrate reductase deposited glassy carbon electrode (GCE/RGO/PPy/NR): biosensor for the detection of nitrate in wastewater, Applied Water Science 8 (2018) 211. https://doi.org/10.1007/s13201-018-0860-1
Q. Xiao, M. Feng, Y. Liu, S. Lu, Y. He, S. Huang, The graphene/polypyrrole/chitosan-modified glassy carbon electrode for electrochemical nitrite detection, Ionics 24 (2017) 845-859. https://doi.org/10.1007/s11581-017-2247-y
K. Dagci, M. Alanyalioglu, Preparation of free-standing and flexible graphene/Ag nanoparticles/poly(pyronin Y) hybrid paper electrode for amperometric determination of nitrite, ACS Applied Materials and Interfaces 8 (2016) 2713-2722. https://doi.org/10.1021/acsami.5b10973
G. Kaladevi, P. Wilson, K. Pandian, Simultaneous and selective electrochemical detection of sulfite and nitrite in water sources using homogeneously dispersed Ag nanoparticles over PANI/rGO nanocomposite, Journal of The Electrochemical Society 167 (2020) 027514. https://doi.org/10.1149/1945-7111/ab6973
C. H. Su, C. L. Sun, Y. C. Liao, Printed combinatorial sensors for simultaneous detection of ascorbic acid, uric acid, dopamine, and nitrite, ACS Omega 2 (2017) 4245-4252. https://doi.org/10.1021/acsomega.7b00681
G. Kaladevi, S. Meenakshi, K. Pandian, P. Wilson, Synthesis of well-dispersed silver nanoparticles on polypyrrole/reduced graphene oxide nanocomposite for simultaneous detection of toxic hydrazine and nitrite in water sources, Journal of The Electrochemical Society 164 (2017) B620-B631. https://doi.org/10.1149/2.0611713jes
R. Sha, K. Kikuo, S. Badhulika, Graphene-polyaniline composite based ultra-sensitive electrochemical sensor for non-enzymatic detection of urea. Electrochimica Acta 233 (2017) 44-51. https://doi.org/10.1016/j.electacta.2017.03.043
A. Jiříčková, O. Jankovský, Z. Sofer, D. Sedmidubský, Synthesis and applications of graphene oxide, Materials 15 (2022) 920. https://doi.org/10.3390/ma15030920
J. S. Horacio M. Gerardo E. Gary Ellis, Recent advances in the covalent modification of graphene with polymers, Macromolecular Rapid Communications 32 (2011) 1771-1789. https://doi.org/10.1002/marc.201100527
Y. Tan, L. Fang, J. Xiao, Y. Song, Q. Zheng, Grafting of copolymers onto graphene by miniemulsion polymerization for conductive polymer composites: improved electrical conductivity and compatibility induced by interfacial distribution of graphene, Polymer Chemistry 4 (2013) 2939 -2944. https://doi.org/10.1039/C3PY00164D
C. Vallés, D. G. Papageorgiou, F. Lin, Z. Li, B. F. Spencer, R. J. Young, I. A. Kinloch, PMMA-grafted graphene nanoplatelets to reinforce the mechanical and thermal properties of PMMA composites, Carbon 157 (2019) 750-760. https://doi.org/10.1016/j.carbon.2019.10.075
H. Du, Z. Li, H. Li, Y. Zhao, X. Li, J. Liu, Z. Ji, Preparation of polymer composite selective permeable membrane with graphene oxide and application for chemical protective clothing, Processes 10 (2022) 471. https://doi.org/10.3390/pr10030471
B. Yuan, B. Wang, Y. Hu, X. Mu, N. Hong, K. M. Liew, Y. Hu, Electrical conductive and graphitizable polymer nanofibers grafted on graphene nanosheets: improving electrical conductivity and flame retardancy of polypropylene, Composites Part A: Applied Science and Manufacturing 84 (2016) 76-86. https://doi.org/10.1016/j.compositesa.2016.01.003
M. Zygo, M. Mrlik, M. Ilcikova, M. Hrabalikova, J. Osicka, M. Cvek, M. Sedlacik, B. Hanulikova, L. Munster, D. Skoda, P. Urbánek, J. Pietrasik, M. Jaroslav, Effect of structure of polymers grafted from graphene oxide on the compatibility of particles with a silicone-based environment and the stimuli-responsive capabilities of their composites, Nanomaterials 10 (2020) 591. https://doi.org/10.3390/nano10030591
S. Wang, H. Chi, L. Chen, W. Li, Y. LI, G. Li, X. Ge, Surface functionalization of graphene oxide with polymer brushes for improving thermal properties of the polymer matrix, Advances in Polymer Technology 2021 (2021) 5591420. https://doi.org/10.1155/2021/5591420
P. Eskandari, Z. Abousalman-Rezvani, H. Roghani-Mamaqani, M. Salami-Kalajahi, H. Mardani, Polymer grafting on graphene layers by controlled radical polymerization, Advances in Colloid and Interface Science 273 (2019) 102021 https://doi.org/10.1016/j.cis.2019.102021
Ł. A. Łukasz, C. Z. Kamil Goc, Z. Szczepan, C. Kapusta, S. Zapotoczny, Enhanced thermal conductivity of polyamide-based nanocomposites containing graphene oxide sheets decorated with compatible polymer brushes, Materials 14 (2021) 751. https://doi.org/10.3390/ma14040751
L. Yang, W. Zhen, Synthesis of graphene oxide-polystyrene graft polymer based on reversible addition fragmentation chain transfer and its effect on properties, crystallization, and rheological behavior of poly (lactic acid), Advances in Polymer Technology 2020 (2020) 9364657. https://doi.org/10.1155/2020/9364657
K. Khezri, M. Najafi, H. Roghani-Mamaqani, Reversible addition fragmentation chain transfer polymerization of styrene from the edge of graphene oxide nanolayers, Journal of Polymer Research 24 (2017) 34. https://doi.org/10.1007/s10965-017-1193-8
H. Mardani, H. Roghani-Mamaqani, K. Khezri, M. Salami-Kalajahi, Polystyrene-attached graphene oxide with different graft densities via reversible addition-fragmentation chain transfer polymerization and grafting through approach, Applied Physics A 126 (2020) 251. https://doi.org/10.1007/s00339-020-3428-5
M. Qiao, S. Wu, Y. Wang, Q. Ran, Brush-like block copolymer synthesized via RAFT polymerization for graphene oxide aqueous suspensions, RSC Advances 7 (2017) 4776-4782. https://doi.org/10.1039/C6RA27480C
M. Namvari, C. S. Biswas, M. Galluzzi, Q. Wang, B. Du, F.J. Stadler, Reduced graphene oxide composites with water soluble copolymers having tailored lower critical solution temperatures and unique tube-like structure, Scientific Reports 7 (2017) 44508. https://doi.org/10.1038/srep44508
A. Murali, S. Sampath, A. B. Appukutti, M. Sakar, S. Chandrasekaran, V. N. Suthanthira, R. Joseph Bensingh, M. Abdul Kader, S. N. Jaisankar, Copper (0) mediated single electron transfer-living radical polymerization of methyl methacrylate: functionalized graphene as a convenient tool for radical initiator, Polymers 12 (2020) 874. https://doi.org/10.3390/polym12040874
S. T. SIoannis, K. M. Triantafyllos, S. A. Dimitris S. Achilias, Effect of graphene oxide on the reaction kinetics of methyl methacrylate in situ radical polymerization via the bulk or solution technique, Polymers 9 (2017) 432. https://doi.org/10.3390/polym9090432
S. Colonna, O. Monticelli, J. Gomez, G. Saracco, A. Fina, Morphology and properties evolution upon ring-opening polymerization during extrusion of cyclic butylene terephthalate and graphene-related-materials into thermally conductive nanocomposites, European Polymer Journal 89 (2017) 57-66. https://doi.org/10.48550/arXiv.1703.00805
S. Colonna, M.M. Bernal, G. Gavoci, J. Gomez, C. Novara, G. Saracco, A. Fina, Effect of processing conditions on the thermal and electrical conductivity of poly (butylene terephthalate) nanocomposites prepared via ring-opening polymerization, Materials and Design 119 (2017) 124-132. https://doi.org/10.1016/j.matdes.2017.01.067
A. Babaie, M. Rezaei, R. L. M. Sofla, Investigation of the effects of polycaprolactone molecular weight and graphene content on crystallinity, mechanical properties and shape memory behavior of polyurethane/graphene nanocomposites, Journal of the Mechanical Behavior of Biomedical Materials 96 (2019) 53-68. https://doi.org/10.1016/j.jmbbm.2019.04.034
E.B. Ko, D.-E. Lee, K.-B. Yoon, Investigation of the effects of polycaprolactone molecular weight and graphene content on crystallinity, mechanical properties and shape memory behavior of polyurethane/graphene nanocomposites, Polymers 12 (2020) 1221. https://doi.org/10.3390/polym12061221
A. Ouadah, T. Luo, J. Wang, S. Gao, X. Wang, X. Zhang, Z. Fang, Z. Wu, J. Wang, C. Zhu, Imidazolium-grafted graphene oxide via free radical polymerization: An efficient and simple method for an interpenetrating polymer network as electrolyte membrane, Composites Science and Technology 164 (2018) 204-213. https://doi.org/10.1016/j.compscitech.2018.05.003
A. A. Hassan, I. Abdulazeez, O. A. Salawu, A. R. Al-Betar, Electrochemical deposition and characterization of polyaniline-grafted graphene oxide on a glassy carbon electrode, SN Applied Sciences 2 (2020) 1257. https://doi.org/10.1007/s42452-020-3074-8
S. Cohen E. Zelikman R. Y. Suckeveriene, Ultrasonically induced polymerization and polymer grafting in the presence of carbonaceous nanoparticles, Processes 8 (2020) 1680. https://doi.org/10.3390/pr8121680
Y. Yu, J. Wang, Preparation of graphene/PMMA composites with assistance of ultrasonic wave under supercritical CO2 conditions, Ultrasonics Sonochemistry 73 (2021) 105487. https://doi.org/10.1016/j.ultsonch.2021.105487
R. S. Chen, M. F. H. Mohd Ruf, D. Shahdan, S. Ahmad, D. Madan, Enhanced mechanical and thermal properties of electrically conductive TPNR/GNP nanocomposites assisted with ultrasonication, PLOS ONE 14 (2019) e0222662. https://doi.org/10.1371/journal.pone.0222662
S. Railian, J. J. Haven, L. Maes, D. De Sloovere, V. Trouillet, A. Welle, P. Adriaensens, M. K. Van Bael, A. Hardy, W. Deferme, T. Junkers. Photo-induced copper-mediated (meth)acrylate polymerization towards graphene oxide and reduced graphene oxide modification, European Polymer Journal 134 (2020) 109810. https://doi.org/10.1016/j.eurpolymj.2020.109810
J. Park, X. Yang, D. Wickramasinghe, M. Sundhoro, N. Orbey, K.F. Chow, M. Yan, Functionalization of pristine graphene for the synthesis of covalent graphene-polyaniline nanocomposite, RSC Advances 10 (2020) 26486-26493. https://doi.org/10.1039/D0RA03579C
N. Rubio, H. Au, H. S. Leese, S. Hu, A.J. Clancy, M. S. P. Shaffer, Grafting from versus grafting to approaches for the functionalization of graphene nanoplatelets with poly(methyl methacrylate), Macromolecules 50 (2017) 7070-7079. https://doi.org/10.1021/acs.macromol.7b01047
V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, K. S. Kim, Functionalization of graphene: covalent and noncovalent approaches, derivatives and applications, Chemical Reviews 112 (2012) 6156-6214. https://doi.org/10.1021/cr3000412
D. W. Johnson, B. P. Dobson, K. S. Coleman, S. Karl, A manufacturing perspective on graphene dispersions, Current Opinion in Colloid and Interface Science 20 (2015) 367-382. https://doi.org/10.1016/j.cocis.2015.11.004
J. L. Apátiga, R. M. del Castillo, L. F. del Castillo, A. G. Calles, R. Espejel-Morales, J. F. Favela, V. Compañ, Noncovalent interactions on polymer-graphene nanocomposites and their effects on the electrical conductivity, Polymers 13 (2021) 1714. https://doi.org/10.3390/polym13111714
A. Vipul, F. Yasemin, W. Alice, M. Namrata, N. T. Bich, A. M. N. Rabiatul, B. Saroj, B. Joanna, L. Sean, P. B. Zetterlund, Influence of anionic surfactants on the fundamental properties of polymer/reduced graphene oxide nanocomposite films, ACS Applied Materials and Interfaces 13 (2021) 18338-18347. https://doi.org/10.1021/acsami.1c02379
L. C. O. Adrian, M. Mariatti, Z. Lockman, Effect of dodecylbenzenesulfonic acid as a surfactant on the properties of polyaniline/graphene nanocomposites. Materials Today: Proceedings 17 (2019) 864-870. https://doi.org/10.1016/j.matpr.2019.06.382
A. Ahmad, PVC/rice straw/SDBS-modified graphene oxide sustainable nanocomposites, Composites Part A: Applied Science and Manufacturing 134 (2020) 105902. https://doi.org/10.1016/j.compositesa.2020.105902
J. Wei, I. Fawad, Effects of surfactants on the properties of epoxy/graphene nanocomposites, Journal of Reinforced Plastics and Composites 37(14) (2018) 960-967 https://doi.org/10.1177/0731684418765369
A. B. Hector, C. C. Ahirton, A. N. Carrillo, M. L. Manchado, Removal of surfactant from nanocomposites films based on thermally reduced graphene oxide and natural rubber, Journal of Composites Science 3 (2019) 31. https://doi.org/10.3390/jcs3020031
Q. Liu, W. Luo, Y. Chen, H. Zou, M. Liang, Enhanced mechanical and thermal properties of CTAB-functionalized graphene oxide-polyphenylene sulphide composites, High Performance Polymers 29(8) (2017) 889-898. https://doi.org/10.1177/0954008316663810
S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, R. S. Ruoff, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate), Journal of Materials Chemistry A 16 (2006) 155-158. https://doi.org/10.1039/B512799H
A. Nardes M. Kemerink, K. M. De, E. Vinken, K. Maturova, R. Janssen, Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol, Organic Electronics 9 (2008) 727-734. https://doi.org/10.1016/j.orgel.2008.05.006
M. Hakimi, A. Salehi, F. Boroumand, Fabrication and characterization of an ammonia gas sensor based on PEDOT-PSS with N-doped graphene quantum dots dopant, Journal of Sensors 16 (2016) 6149-6154. https://doi.org/10.1109/JSEN.2016.2585461
M. Wang, X. Y. Deng, A. K. Du, T. H. Zhao, J. B. Zeng, Poly(sodium 4-styrenesulfonate) modified graphene for reinforced biodegradable poly(ε-caprolactone) nanocomposites, RSC Advances 5 (2015) 73146-73154. https://doi.org/10.1039/C5RA15252F
R. Verdejo, M. M. Bernal, L. J. Romasanta, M. A. Lopez-Manchado, Graphene filled polymer nanocomposites, Journal of Materials Chemistry A 21 (2011) 3301-3310. https://doi.org/10.1039/C0JM02708A
M. Zhang, Y. Li, Z. Su, G. Wei, Recent advances in the synthesis and applications of graphene-polymer nanocomposites, Polymer Chemistry 6 (2015) 6107-6124. https://doi.org/10.1039/C5PY00777A
E. Lago, P. S. Toth, G. Pugliese, V. Pellegrini, F. Bonaccorso, Solution blending preparation of polycarbonate/graphene composite: boosting the mechanical and electrical properties, RSC Advances 6 (2016) 97931. https://doi.org/10.1039/C6RA21962D
M. Z. Iqbal, A. A. Abdala, V. Mittal, S. Seifert, A. M. Herring, M. W. Liberatore, Processable conductive graphene/polyethylene nanocomposites: Effects of graphene dispersion and polyethylene blending with oxidized polyethylene on rheology and microstructure, Polymer 98 (2016) 143-155. https://doi.org/10.1016/j.polymer.2016.06.021
W. Chen, H. Weimin, D. Li, S. Chen, Z. Dai, Zhongxu, A critical review on the development and performance of polymer/graphene nanocomposites, Science and Engineering of Composite Materials 25 (2018) 1059-1073. https://doi.org/10.1515/secm-2017-0199
C. Feng, D. Zhu, Y. Wang, S. Jin, Electromechanical behaviors of graphene reinforced polymer composites: a review, Materials 13 (2020) 528. https://doi.org/10.3390/ma13030528
C. Tu, K. Nagata, S. Yan, Influence of melt-mixing processing sequence on electrical conductivity of polyethylene/polypropylene blends filled with graphene, Polymer Bulletin 74 (2017) 1237-1252. https://doi.org/10.1007/s00289-016-1774-4
A. Graziano, S. Jaffer, M. Sain, Graphene oxide modification for enhancing high-density polyethylene properties: a comparison between solvent reaction and melt mixing, Journal of Polymer Engineering 39 (2019) 85-93. https://doi.org/10.1515/polyeng-2018-0106
M. Šupová, G. S. Martynková, K. Barabaszová, Effect of nanofillers dispersion in polymer matrices: a review, Science of Advanced Materials 3 (2011) 1-25. https://doi.org/10.1166/sam.2011.1136
L. Qi, Y. Li, J. Weng, B. Liu, X. He, The mechanical properties of polyethylene/graphene nanocomposites by in-situ synthesis, Materials Research Express 6 (2019) 065324. https://doi.org/10.1088/2053-1591/ab102b
E. Su, W. Gao, X. Hu, C. Zhang, B. Zhu, J. Jia, A. Huang, Y. Bai, Preparation of ultrahigh molecular weight polyethylene/graphene nanocomposite in situ polymerization via spherical and sandwich structure graphene/SiO2 support, Nanoscale Research Letters 13 (2018) 105. https://doi.org/10.1186/s11671-018-2515-4
C. Kui, L. Haoliang, Z. Mohan, Q. Hanxun, Y. Junhe, In situ polymerization of graphene-polyaniline@polyimide composite films with high EMI shielding and electrical properties, RSC Advances 10 (2020) 2368-2377. https://doi.org/10.1039/C9RA08026K
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
Kurita Water and Environment Foundation
Grant numbers 2021-0239-103-11