Hybrid polymer inclusion membrane as anion exchange membrane for recovering Pd2+ ions in electrogenerative process

Original scientific paper

Authors

  • Syed Fariq Fathullah Syed Yaacob Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia https://orcid.org/0000-0002-5099-9700
  • Nadia Mansor Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia https://orcid.org/0000-0002-2121-0459
  • Syaza Atikah Nizar Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia https://orcid.org/0000-0002-1418-1645
  • Ayo Olasupo Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia https://orcid.org/0000-0003-4747-7415
  • Norita Mohamed Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
  • Faiz Bukhari Mohd Suah Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia https://orcid.org/0000-0002-9361-4524

DOI:

https://doi.org/10.5599/jese.1501

Keywords:

hybrid inorganic-organic membrane, chloride solution, ionic liquids
Graphical Abstract

Abstract

A novel non-plasticized nano-porous hybrid inorganic-organic polymer inclusion membrane (PIM) was synthesized, characterized, and evaluated as an anion exchange membrane for application in electrogenerative processes to recover Pd2+ ions. Ionic liquids 1-ethyl-3-me­thyl­imidazolium chloride (EMIM-Cl) and 1-butyl-3-methylimidazolium chloride (BMIM-Cl) were used as the carrier molecules in the polymeric network of PIM to enhance anion exchange process. This hybrid anion exchange membrane also consists of a polymeric matrix of non-plasticized cellulose triacetate modified by incorporating an inorganic material (silane) prepared by the sol-gel route. Different parameters affecting the ion transport performance efficiency, i.e., the composition of the membrane, type of ionic liquid (carrier molecule) and ion–exchange capacity, were investigated and optimized. In the electrogenerative process, the results revealed that the prepared PIM yields better recovery results for recovering Pd2+ ions from its chloride solution compared to the commercial anion exchange membrane Neosepta® AM-01, with a full recovery of 100 mg/L Pd2+ ions in 30 min. This preliminary study shows that the prepared low-cost hybrid anion exchange membrane PIM can act as an inexpensive material suitable for the rapid and efficient recovery of Pd2+ ions from an aqueous solution.

Downloads

Download data is not yet available.

References

J. Kanagaratnam, F. B. M. Suah, An innovative use of electrochemically modified three‐dimensional carbon felt for a rapid recovery of gold from diluted chloride solution, Journal of Chemical Technology & Biotechnology 96(8) (2021) 2219-2227. https://doi.org/10.1002/jctb.6736

M. N. Jajuli, N. Mohamed, F. B. M. Suah, Electrochemical removal of cadmium from a sulphate solution using a three-dimensional electrode, Alexandria Engineering Journal 59(6) (2020) 4237-4245. https://doi.org/10.1016/j.aej.2020.07.027

N. A. Roslan, F. B. M. Suah, N. Mohamed, Influence of different 3-D electrodes towards the performance of gold recovery by using an electrogenerative process, Arabian Journal of Chemistry 13(1) (2020) 1440-1448. https://doi.org/10.1016/j.arabjc.2017.11.015

F. B. M. Suah, B.P . Teh, N. Mansor, H. H. Hamzah, N. Mohamed, A closed-loop electrogenerative recycling process for recovery of silver from a diluted cyanide solution, RSC Advances 9(54) (2019) 31753-31757. https://doi.org/10.1039/C9RA05557F

S. Jiang, H. Sun, H. Wang, B. P. Ladewig, Z. Yao, A comprehensive review on the synthesis and applications of ion exchange membranes, Chemosphere 282 (2021) 130817. https://doi.org/10.1016/j.chemosphere.2021.130817

R. Pärnamäe, S. Mareev, V. Nikonenko, S. Melnikov, N. Sheldeshov, V. Zabolotskii, H.V.M. Hamelers, M. Tedesco, Bipolar membranes: A review on principles, latest developments, and applications, Journal of Membrane Science 617 (2021) 118538. https://doi.org/10.1016/j.memsci.2020.118538

W. You, K. J. T. Noonan, G. W. Coates, Alkaline-stable anion exchange membranes: A review of synthetic approaches, Progress in Polymer Science 100 (2020) 101177. https://doi.org/10.1016/j.progpolymsci.2019.101177

A. Breytus, Y. Huang, D. Hasson, R. Semiat, H. Shemer, A comparative study on Donnan dialysis separation using homogeneous and heterogeneous anion-exchange membranes, Desalination and Water Treatment 225 (2021) 1-10. https://doi.org/10.5004/dwt.2021.27305

J.-M.A. Juve, F.M.S. Christensen, Y. Wang, Z. Wei, Electrodialysis for metal removal and recovery: A review, Chemical Engineering Journal 435(2) (2022) 134857. https://doi.org/10.1016/j.cej.2022.134857

J. Lei, X. Liu, X. Chen, H. Luo, W. Feng, J. Zhang, F. Liu, S. Pei, Y. Zhang, Ultra-bubble-repellent sodium perfluorosulfonic acid membrane with a mussel-inspired intermediate layer for high-efficiency chlor-alkali electrolysis, Journal of Membrane Science 644 (2022) 120181. https://doi.org/10.1016/j.memsci.2021.120181

L. Liu, Y. Lu, C. Ning, N. Li, S. Chen, Z. Hu, Comb-shaped sulfonated poly (aryl ether sulfone) proton exchange membrane for fuel cell applications, International Journal of Hydrogen Energy 47(36) (2022)16249-16261. https://doi.org/10.1016/j.ijhydene.2022.03.134

Y. Liu, J. Ding, H. Zhu, X. Wu, L. Dai, R. Chen, B. Van der Bruggen, Recovery of trivalent and hexavalent chromium from chromium slag using a bipolar membrane system combined with oxidation, Journal of Colloid and Interface Science 619 (2022) 280-288. https://doi.org/10.1016/j.jcis.2022.03.140

J. Ran, L. Wu, Y. He, Z. Yang, Y. Wang, C. Jiang, L. Ge, E. Bakangura, T. Xu, Ion exchange membranes: New developments and applications, Journal of Membrane Science 522 (2017) 267-291. https://doi.org/10.1016/j.memsci.2016.09.033

B. Swanckaert, J. Geltmeyer, K. Rabaey, K. De Buysser, L. Bonin, K. De Clerck, A review on ion-exchange nanofiber membranes: properties, structure and application in electrochemical (waste)water treatment, Separation and Purification Technology 287 (2022) 120529. https://doi.org/10.1016/j.seppur.2022.120529

D. Tichý, Z. Slouka, Semi-Continuous Desalination and Concentration of Small-Volume Samples, International Journal of Molecular Sciences 22(23) (2021) 12904. https://doi.org/10.3390/ijms222312904

K. Xu, S. Pei, W. Zhang, Z. Han, G. Liu, X. Xu, J. Ma, Y. Zhang, F. Liu, Y. Zhang, L. Wang, Y. Zou, H. Ding, P. Guan, Chemical stability of proton exchange membranes synergistically promoted by organic antioxidant and inorganic radical scavengers, Journal of Membrane Science 655 (2022) 120594. https://doi.org/10.1016/j.memsci.2022.120594

W. W. Guan, X. Y. Shi, T. T. Xu, K. Wan, B. W. Zhang, W. Liu, H. L. Su, Z. Q. Sou, Y. W. Du, Synthesis of well-insulated Fe–Si–Al soft magnetic composites via a silane-assisted organic/inorganic composite coating route, Journal of Physics and Chemistry of Solids 150 (2021) 109841. https://doi.org/10.1016/j.jpcs.2020.109841

Y. Mo, L. Zhang, X. Zhao, J. Li, L. Wang, A critical review on classifications, characteristics, and applications of electrically conductive membranes for toxic pollutant removal from water: Comparison between composite and inorganic electrically conductive membranes, Journal of Hazardous Materials 436 (2022) 129162. https://doi.org/10.1016/j.jhazmat.2022.129162

I. Paulraj, V. Lourdhusamy, C.-Y. Liu, Organic/Inorganic n-type PVDF/Cu0.6Ni0.4 hybrid composites for thermoelectric application: A thermoelectric generator made of 8 pairs of p-leg ZnSb/Sb and n-leg β-PVDF/Cu0.6Ni0.4, Chemical Engineering Journal 446 (Part 3) (2022) 137083. https://doi.org/10.1016/j.cej.2022.137083

S. S. Todkar, S. A. Patil, Review on mechanical properties evaluation of pineapple leaf fibre (PALF) reinforced polymer composites, Composites Part B: Engineering 174 (2019) 106927. https://doi.org/10.1016/j.compositesb.2019.106927

D. R. Dekel, Review of cell performance in anion exchange membrane fuel cells, Journal of Power Sources 375 (2018) 158-169. https://doi.org/10.1016/j.jpowsour.2017.07.117

P. Xu, Y. Luo, P. Zhang, Interfacial architecting of organic–inorganic hybrid toward mechanically reinforced, fire-resistant and smoke-suppressed polyurethane composites, Journal of Colloid and Interface Science 621 (2022) 385-397. https://doi.org/10.1016/j.jcis.2022.04.082

N. Mansor, N. Mohamed, F. B. M. Suah, Electrochemical recovery of low concentration of palladium from palladium (II) chloride of electroplating wastewater, Journal of Chemical Technology & Biotechnology 96(11) (2021) 3216-3223. https://doi.org/10.1002/jctb.6878

N. A. Roslan, F. B. M. Suah, N. Mohamed, The use of an electrogenerative process as a greener method for recovery of gold (III) from the E-waste, Separation and Purification Technology 182 (2017) 1-8. https://doi.org/10.1016/j.seppur.2017.03.032

F. B. M. Suah, N. A. Roslan, N. F. Dahlan, N. Mohamed, A use of polymer inclusion membrane as anion exchange membrane for recovery of Cu(II) ions based on an electrogenerative system, Journal of The Electrochemical Society 165(7) (2018) H310. https://doi.org/10.1149/2.0101807jes

N. Mansor, N. Mohamed, F. S. Mehamod, F. B. M. Suah, Galvanic deposition of Pd2+ ion in chloride solution by using different three dimensional electrodes, Journal of Electroanalytical Chemistry 838 (2019) 23-32. https://doi.org/10.1016/j.jelechem.2019.02.014

M. Resina, J. Macanás, J. De Gyves, M. Muñoz, Zn (II), Cd (II) and Cu (II) separation through organic–inorganic hybrid membranes containing di-(2-ethylhexyl) phosphoric acid or di-(2-ethylhexyl) dithiophosphoric acid as a carrier, Journal of Membrane Science 268(1) (2006) 57-64. https://doi.org/10.1016/j.memsci.2005.06.008

M. Resina, J. Macanás, J. De Gyves, M. Muñoz, Development and characterization of hybrid membranes based on an organic matrix modified with silanes for metal separation, Journal of Membrane Science 289(1-2) (2007) 150-158. https://doi.org/10.1016/j.memsci.2006.11.049

F. Hu, H. Hu, J. Tang, X. Qiu, W. Jin, J. Hu, Plasticization-induced oriented micro-channels within polymer inclusion membranes for facilitating Cu (II) transport, Journal of Molecular Liquids 301 (2020) 112457. https://doi.org/10.1016/j.molliq.2020.112457

Published

08-12-2022 — Updated on 08-12-2022

How to Cite

Syed Yaacob, S. F. F., Mansor, N. ., Nizar, S. A. ., Olasupo, A. ., Mohamed, N., & Mohd Suah, F. B. (2022). Hybrid polymer inclusion membrane as anion exchange membrane for recovering Pd2+ ions in electrogenerative process: Original scientific paper. Journal of Electrochemical Science and Engineering, 13(2), 347–360. https://doi.org/10.5599/jese.1501

Issue

Section

Electrochemical Engineering

Funding data