Screen-printed carbon electrode/natural silica-ceria nanocomposite for electrochemical aptasensor application

Original scientific paper

Authors

  • Salma Nur Zakiyyah Department of Chemistry, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km. 21 Jatinangor, Sumedang 45363, Indonesia https://orcid.org/0000-0003-0985-5980
  • Diana Rakhmawaty Eddy Department of Chemistry, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km. 21 Jatinangor, Sumedang 45363, Indonesia https://orcid.org/0000-0002-8384-5978
  • M. Lutfi Firdaus Graduate School of Science Education, bengkulu University, Jl. W.R. Supratman Kandang Limun, Bengkulu 38371, Indonesia https://orcid.org/0000-0002-5627-5834
  • Toto Subroto Bionformatics and Biomolecular Research Center, Universitas Padjadjaran, Jl. Singaperbangsa 2, Bandung 40132, Indonesia https://orcid.org/0000-0002-1629-407X
  • Yeni Wahyuni Hartati Department of Chemistry, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km. 21 Jatinangor, Sumedang 45363, Indonesia https://orcid.org/0000-0003-1463-6352

DOI:

https://doi.org/10.5599/jese.1455

Keywords:

Silica-ceria, synthesis composite, aptamer, ENaC protein, hypertension biomarker, voltammetry
Graphical Abstract

Abstract

A nanocomposite of natural silica and ceria was synthesized to modify a screen-printed carbon electrode (SPCE) to develop an aptasensor to detect epithelial sodium channel (ENaC) protein in urine as a biomarker of hypertension. The method steps were the synthesis of natural silica-ceria nanocomposite using the hydrothermal method, obtaining of natural silica nanoparticles from the extraction of alkaline silica sand and ceria nanoparticles from cerium nitrate, modification of SPCE/natural silica-ceria, immobilization of aptamer through streptavidin-biotin, and detection of ENaC protein conc­entration. Box-Behnken’s design was employed to determine the optimal con­ditions of aptamer concentration (0.5 μg mL-1), streptavidin incubation time (30 min), and aptamer incubation time (1 hour), respectively. Differential pulse voltam­metry (DPV) characterization of the developed electrochemical aptasensor revealed that the [Fe(CN)6]3-/4- redox peak current increased from 3.190 to 9.073 μA, with detection and quantification limits of 0.113 and 0.343 ng mL-1, respectively. The method is proven as a simple and rapid method to monitor ENaC levels in urine samples.

Downloads

Download data is not yet available.

References

X. Luo, A. Morrin, A. J. Killard, M. R. Smyth, Application of nanoparticles in electrochemical sensors and biosensors, Electroanalysis 18 (2006) 319-326. https://doi.org/10.1002/elan.200503415

C. E. Chivers, A. L. Koner, E. D. Lowe, M. Howarth, How the biotin-streptavidin interaction was made even stronger: Investigation via crystallography and a chimaeric tetramer, Biochemical Journal 435 (2011) 55-63. https://doi.org/10.1042/BJ20101593

Y. W. Hartati, D. R. Komala, D. Hendrati, S. Gaffar, A. Hardianto, Y. Sofiatin, H. H. Bahti, An aptasensor using ceria electrodeposited-screen-printed carbon electrode for detection of epithelial sodium channel protein as a hypertension biomarker, Royal Society Open Science, 8 (2021) 202040. https://doi.org/10.1098/rsos.202040

Y. W. Hartati, S. Gaffar, D. Alfiani, U. Pratomo, Y. Sofiatin, T. Subroto, A voltammetric immunosensor based on gold nanoparticle - Anti-ENaC bioconjugate for the detection of epithelial sodium channel (ENaC) protein as a biomarker of hypertension, Sensing and Bio-Sensing Research 29 (2020) 100343. https://doi.org/10.1016/j.sbsr.2020.100343

S. Ismail, N. A. Yusof, J. Abdullah, S. F. Abd Rahman, Development of Electrochemical Sensor Based on Silica/Gold Nanoparticles Modified Electrode for Detection of Arsenite, IEEE Sensors Journal 20 (2020) 3406-3414. https://doi.org/10.1109/JSEN.2019.2953799

S. Cajigas, D. Alzate, J. Orozco, Gold nanoparticle/DNA-based nanobioconjugate for electrochemical detection of Zika virus, Microchimica Acta 187 (2020) 594. https://doi.org/10.1007/s00604-020-04568-1

C. Núñez, J. J. Triviño, V. Arancibia, A electrochemical biosensor for As(III) detection based on the catalytic activity of Alcaligenes faecalis immobilized on a gold nanoparticle–modified screen–printed carbon electrode, Talanta 223 (2021) 121702. https://doi.org/10.1016/j.talanta.2020.121702

A. K. Sari, Y. W. Hartati, S. Gaffar, I. Anshori, D. Hidayat, H. L. Wiraswati, The optimization of an electrochemical aptasensor to detect RBD protein S SARS-CoV-2 as a biomarker of COVID-19 using screen-printed carbon electrode/AuNP, Journal of Electrochemical Science and Engineering. 12 (2022) 219–235 https://doi.org/10.5599/jese.1206

R. Sakthivel, M. Annalakshmi, S.M. Chen, S. Kubendhiran, R. Anbazhagan, H. C. Tsai, A novel sensitive and reliable electrochemical determination of palmatine based on CeO2 /RGO/MWCNT ternary composite, , Journal of the Taiwan Institute of Chemical Engineers 96 (2019) 549-558. https://doi.org/10.1016/j.jtice.2018.11.008

R. C. de Carvalho, A. J. Betts, J. F. Cassidy, Diclofenac determination using CeO2 nanoparticle modified screen-printed electrodes – A study of background correction, Microchemical Journal 158 (2020) 105258. https://doi.org/10.1016/j.microc.2020.105258

Y. Bai, H. Yang, W. Yang, Y. Li, C. Sun, Gold nanoparticles-mesoporous silica composite used as an enzyme immobilization matrix for amperometric glucose biosensor construction, Sensors and Actuators B: Chemical 124 (2007) 179-186. https://doi.org/10.1016/j.snb.2006.12.020

L. Zhao, Y. Huang, Y. Dong, X. Han, S. Wang, X. Liang, Aptamers and aptasensors for highly specific recognition and sensitive detection of marine biotoxins: Recent advances and perspectives, Toxins 10 (2018) 427. https://doi.org/10.3390/toxins10110427

J. Fei, W. Dou, G. Zhao, A sandwich electrochemical immunoassay for Salmonella pullorum and Salmonella gallinarum based on a AuNPs/SiO2/Fe3O4 adsorbing antibody and 4 channel screen printed carbon electrode electrodeposited gold nanoparticles, RSC Advances 5 (2015) 74548-74556. https://doi.org/10.1039/c5ra12491c

A. Kornii, V. Saska, V. V. Lisnyak, O. Tananaiko, Carbon Nanostructured Screen-printed Electrodes Modified with CuO/Glucose Oxidase/Maltase/SiO2 Composite Film for Maltose Determination, Electroanalysis 32 (2020) 1468-1479. https://doi.org/10.1002/elan.202000059

J. P. Metters, R. O. Kadara, C. E. Banks, New directions in screen printed electroanalytical sensors: An overview of recent developments, Analyst 136 (2011) 1067-1076. https://doi.org/10.1039/c0an00894j

S. H. Wu, H. P. Lin, Synthesis of mesoporous silica nanoparticles, Chemical Society Reviews 42 (2013) 3862-3875. https://doi.org/10.1039/c3cs35405a

Y. Sun, Y. Lin, C. Ding, W. Sun, Y. Dai, X. Zhu, H. Liu, C. Luo, An ultrasensitive and ultraselective chemiluminescence aptasensor for dopamine detection based on aptamers modified magnetic mesoporous silica @ graphite oxide polymers, Sensors and Actuators B: Chemical 257 (2018) 312-323. https://doi.org/10.1016/j.snb.2017.10.171

A. Walcarius, Silica-based electrochemical sensors and biosensors: Recent trends, Current Opinion in Electrochemistry 10 (2018) 88-97. https://doi.org/10.1016/j.coelec.2018.03.017

J. Li, Y. Hao, H. Li, M. Xia, X. Sun, L. Wang, Direct synthesis of CeO2/SiO2 mesostructured composite materials via sol-gel process, Microporous and Mesoporous Materials 120 (2009) 421-425. https://doi.org/10.1016/j.micromeso.2008.12.014

M. L. Firdaus, F. E. Madina, Y. F. Sasti, R. Elvia, S. N. Ishmah, D. R. Eddy, A. P. Cid-Andres, Silica extraction from beach sand for dyes removal: Isotherms, kinetics and thermodynamics, Rasayan Journal of Chemistry 13 (2020) 249-254. https://doi.org/10.31788/RJC.2020.1315496

S. Ismail, N. A. Yusof, J. Abdullah, S. F. Abd Rahman, Electrochemical detection of arsenite using a silica nanoparticles-modified screen-printed carbon electrode, Materials 13 (2020) 3168. https://doi.org/10.3390/ma13143168

A. Sánchez, S. Morante-Zarcero, D. Pérez-Quintanilla, I. Sierra, I. Del Hierro, Development of screen-printed carbon electrodes modified with functionalized mesoporous silica nanoparticles: Application to voltammetric stripping determination of Pb(II) in non-pretreated natural waters, Electrochimica Acta 55 (2010) 6983-6990. https://doi.org/10.1016/j.electacta.2010.06.090

W. Siangproh, W. Dungchai, P. Rattanarat, O. Chailapakul, Nanoparticle-based electrochemical detection in conventional and miniaturized systems and their bioanalytical applications: A review, Analytica Chimica Acta 690 (2011) 10-25. https://doi.org/10.1016/j.aca.2011.01.054

S. Xunwen, Z. Liqun, L. Weiping, L. Huicong, Y. Hui, The synthesis of monodispersed M-CeO2/SiO2 nanoparticles and formation of UV absorption coatings with them, Royal Society of Chemistry 10 (2020) 4554-4560. https://doi.org/10.1039/c9ra08975f

Q. Ma, Y. Li, X. Su, Silica-nanobead-based sensors for analytical and bioanalytical applications, Trends in Analytical Chemistry 74 (2015) 130-145. https://doi.org/10.1016/j.trac.2015.06.006

S. Damiati, C. Haslam, S. Sopstad, M. Peacock, T. Whitley, P. Davey, S. A. Awan, Sensitivity Comparison of Macro-and Micro-Electrochemical Biosensors for Human Chorionic Gonadotropin (hCG) Biomarker Detection, IEEE Access 7 (2019) 94048-94058. https://doi.org/10.1109/ACCESS.2019.2928132

Y. W. Hartati, S. F. Yusup, Fitrilawati, S. Wyantuti, Y. Sofiatin, S. Gaffar, A voltammetric epithelial sodium channels immunosensor using screen-printed carbon electrode modified with reduced graphene oxide, Current Chemistry Letters 9 (2020) 151-160. https://doi.org/10.5267/j.ccl.2020.2.001

S. Oparil, M. C. Acelajado, G. L. Bakris, D. R. Berlowitz, R. Cífková, A. F. Dominiczak, G. Grassi, J. Jordan, N. R. Poulter, A. Rodgers, P. K. Whelton, Hypertension, Nature Reviews Disease Primers 4 (2018) 18014. https://doi.org/10.1038/nrdp.2018.14

H. W. Choi, K. H. Lee, N. H. Hur, H. B. Lim, Cerium oxide-deposited mesoporous silica nanoparticles for the determination of carcinoembryonic antigen in serum using inductively coupled plasma-mass spectrometry, Analytica Chimica Acta 847 (2014) 10-15. https://doi.org/10.1016/j.aca.2014.08.041

G. Frindt, D. Gravotta, L. G. Palmer, Regulation of ENaC trafficking in rat kidney, Journal of General Physiology 147 (2016) 217-227. https://doi.org/10.1085/jgp.201511533

E. Reus-Chavarría, I. Martínez-Vieyra, C. Salinas-Nolasco, A. E. Chávez-Piña, J. V. Méndez-Méndez, E. O. López-Villegas, A. Sosa-Peinado, D. Cerecedo, Enhanced expression of the Epithelial Sodium Channel in neutrophils from hypertensive patients, Biochimica Biophysica Acta - Biomembranes 1861 (2019) 387-402. https://doi.org/10.1016/j.bbamem.2018.11.003

Rajesh, S. Singal, R. K. Kotnala, Single Frequency Impedance Analysis on Reduced Graphene Oxide Screen-Printed Electrode for Biomolecular Detection, Applied Biochemistry and Biotechnology 183 (2017) 672-683. https://doi.org/10.1007/s12010-017-2510-8

Y. W. Hartati, S. Gaffar, D. Alfiani, U. Pratomo, Y. Sofiatin, T. Subroto, A voltammetric immunosensor based on gold nanoparticle - Anti-ENaC bioconjugate for the detection of epithelial sodium channel (ENaC) protein as a biomarker of hypertension, Sensing and Bio-Sensing Research 29 (2020) 100343. https://doi.org/10.1016/j.sbsr.2020.100343

B. Kayhan, N. Kayabas, Aptamers: An in vitro Evolution of Therapeutic and Diagnostic Applications in Medicine, Disease and Molecular Medicine 1 (2013) 54-60. https://doi.org/10.5455/dmm.20131104040658

P. Yáñez-Sedeño, J. M. Pingarrón, Gold nanoparticle-based electrochemical biosensors, Analytical and Bioanalytical Chemistry 382 (2005) 884-886. https://doi.org/10.1007/s00216-005-3221-5

C. M. Dundas, D. Demonte, S. Park, Streptavidin-biotin technology: Improvements and innovations in chemical and biological applications, Applied Microbiology and Biotechnology. 97 (2013) 9343-9353. https://doi.org/10.1007/s00253-013-5232-z

D. R. Komala, A. Hardianto, S. Gaffar, Y. W. Hartati, An epithelial sodium channel (ENaC)-specific aptamer determined through structure-based virtual screening for the development of hypertension early detection system, Pharmaceutical Sciences 27 (2021) 67-75. https://doi.org/10.34172/PS.2020.63

M. M. Ali, H. S. Mahdi, A. Parveen, A. Azam, Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method, AIP Conference Proceedings 1953 (2018) 030044. https://doi.org/10.1063/1.5032379

S. N. Ishmah, M. D. Permana, M. L. Firdaus, D. R. Eddy, Extraction of Silica from Bengkulu Beach Sand using Alkali Fusion Method, PENDIPA Journal of Science Education 4 (2020) 1-5. https://doi.org/10.33369/pendipa.4.2.1-5

S. Phanichphant, A. Nakaruk, D. Channei, Photocatalytic activity of the binary composite CeO2/SiO2 for degradation of dye, Applied Surface Science 387 (2016) 214-220. https://doi.org/10.1016/j.apsusc.2016.06.072

M. L. Yola, N. Atar, A novel detection approach for serotonin by graphene quantum dots/two-dimensional (2D) hexagonal boron nitride nanosheets with molecularly imprinted polymer, Applied Surface Science 458 (2018) 648-655. https://doi.org/10.1016/j.apsusc.2018.07.142

R. Sha, N. Vishnu, S. Badhulika, MoS2 based ultra-low-cost, flexible, non-enzymatic and non-invasive electrochemical sensor for highly selective detection of Uric acid in human urine samples, Sensors and Actuators B: Chemical 279 (2019) 53-60. https://doi.org/10.1016/j.snb.2018.09.106

M. S. Pujar, S.M. Hunagund, V. R. Desai, S. Patil, A. H. Sidarai, One-step synthesis and characterizations of cerium oxide nanoparticles in an ambient temperature via Co-precipitation method, AIP Conference Proceedings 1942 (2018) 050026. https://doi.org/10.1063/1.5028657

J. Calvache-Muñoz, F.A. Prado, J. E. Rodríguez-Páez, Cerium oxide nanoparticles: Synthesis, characterization and tentative mechanism of particle formation, Colloids and Surfaces A: Physicochemical and Engineering Aspects 529 (2017) 146–159. https://doi.org/10.1016/j.colsurfa.2017.05.059

R. Dalmis, I. Birlik, N.F. Ak Azem, E. Celik, Structurally colored silica photonic crystal coatings modified by Ce or Eu rare-earth dopants, Colloids and Surfaces A: Physicochemical and Engineering Aspects 603 (2020) 125138. https://doi.org/10.1016/j.colsurfa.2020.125138

F. Vaja Dumitru, O. Oprea, D. Ficai, A. Ficai, C. Guran, Synthesis of CeO2 nanoparticles on the mesoporous silica support via nanocasting, Digest Journal of Nanomaterials and Biostructures 9 (2014) 187-195.

D. K. Maharani, R. Hidayah, Preparation And Characterization Of Chitosan-ZnO/Al2O3 Composite, Molekul 10 (2015) 9-18. http://dx.doi.org/10.20884/1.jm.2015.10.1.167

S. K. Kannan, M. Sundrarajan, A green approach for the synthesis of a cerium oxide nanoparticle: Characterization and antibacterial activity, International Journal of Nanoscience. 13 (2014) 1450018. https://doi.org/10.1142/S0219581X14500185

J. E. ten Elshof, Chemical solution deposition techniques for epitaxial growth of complex oxides, in Epitaxial Growth of Complex Metal Oxides, G. Koster, M. Huijben, G. Rijnders (Eds.), Woodhead Publishing, Enschede, Netherlands, 2015. https://doi.org/10.1016/B978-1-78242-245-7.00004-X

D. E. Hyre, Cooperative hydrogen bond interactions in the streptavidin-biotin system, Protein Science 15 (2006) 459-467. https://doi.org/10.1110/ps.051970306

D. A. Armbruster, T. Pry, Limit of blank, limit of detection and limit of quantitation, The Clinical Biochemist Reviews 29 (2008) S49-S52. PMID: 18852857

J. C. Miller, J. N. Miller, Statistika untuk kimia analitik, ITB Press, 1991. ISBN 9798001486

Y. Sofiatin, R. MA Roesli, Detection of Urinary Epithelial Sodium Channel (ENaC) Protein, American Journal of Clinical Medicine Research 6 (2018) 20-23. https://doi.org/10.12691/ajcmr-6-2-1

AOAC International, Appendix F: Guidelines for Standard Method Performance Requirements, Journal of AOAC International and Official Method of Analysis 9 (2016) 1-18.

C. B. L. Jumbe, Cointegration and causality between electricity consumption and GDP: Empirical evidence from Malawi, Energy Economics 26 (2004) 61-68. https://doi.org/10.1016/S0140-9883(03)00058-6

H. A. Samie, M. Arvand, Label-free electrochemical aptasensor for progesterone detection in biological fluids, Bioelectrochemistry 133 (2020) 107489. https://doi.org/10.1016/j.bioelechem.2020.107489

H. Tan, T. Guo, H. Zhou, H. Dai, Y. Yu, H. Zhu, H. Wang, Y. Fu, Y. Zhang, L. Ma, A simple mesoporous silica nanoparticle-based fluorescence aptasensor for the detection of zearalenone in grain and cereal products, Analytical and Bioanalytical Chemistry 412 (2020) 5627-5635. https://doi.org/10.1007/s00216-020-02778-3

A. B. Hashkavayi, J. B. Raoof, Design an aptasensor based on structure-switching aptamer on dendritic gold nanostructures/Fe3O4@SiO2/DABCO modified screen printed electrode for highly selective detection of epirubicin, Biosensors and Bioelectronics 91 (2017) 650-657. https://doi.org/10.1016/j.bios.2017.01.025

S. M. Taghdisi, N. M. Danesh, M. Ramezani, K. Abnous, A new amplified fluorescent aptasensor based on hairpin structure of G-quadruplex oligonucleotide-Aptamer chimera and silica nanoparticles for sensitive detection of aflatoxin B 1 in the grape juice, Food Chemistry 268 (2018) 342-346. https://doi.org/10.1016/j.foodchem.2018.06.101

M. Roushani, K. Ghanbari, An electrochemical aptasensor for streptomycin based on covalent attachment of the aptamer onto a mesoporous silica thin film-coated gold electrode, Microchimica Acta 186 (2019) 115. https://doi.org/10.1007/s00604-018-3191-x

J. Wang, J. Guo, J. Zhang, W. Zhang, Y. Zhang, RNA aptamer-based electrochemical aptasensor for C-reactive protein detection using functionalized silica microspheres as immunoprobes, Biosensors and Bioelectronics 95 (2017) 100-105. https://doi.org/10.1016/j.bios.2017.04.014

A. B. Hashkavayi, J. B. Raoof, R. Ojani, Construction of a highly sensitive signal-on aptasensor based on gold nanoparticles/functionalized silica nanoparticles for selective detection of tryptophan, Analytical and Bioanalytical Chemistry 409 (2017) 6429-6438. https://doi.org/10.1007/s00216-017-0588-z

L. S. Khabbaz, M. Hassanzadeh-Khayyat, P. Zaree, M. Ramezani, K. Abnous, S. M. Taghdisi, Detection of kanamycin by using an aptamer-based biosensor using silica nanoparticles, Analytical Methods 7 (2015) 8611-8616. https://doi.org/10.1039/c5ay01807b

Y. Du, S. Guo, H. Qin, S. Dong, E. Wang, Target-induced conjunction of split aptamer as new chiral selector for oligopeptide on graphene–mesoporous silica–gold nanoparticle hybrids modified sensing platform, Chemical Communications 48 (2012) 799-801. https://doi.org/10.1039/c1cc15303j

Y. Wang, X. He, K. Wang, X. Ni, J. Su, Z. Chen, Electrochemical detection of thrombin based on aptamer and ferrocenylhexanethiol loaded silica nanocapsules, Biosensors and Bioelectronics 26 (2011) 3536-3541. https://doi.org/10.1016/j.bios.2011.01.041

R. Chand, S. Neethirajan, Microfluidic platform integrated with graphene-gold nano-composite aptasensor for one-step detection of norovirus, Biosensors and Bioelectronics 98 (2017) 47-53. https://doi.org/10.1016/j.bios.2017.06.026

K. Abnous, N. M. Danesh, M. Alibolandi, M. Ramezani, S. M. Taghdisi, Amperometric aptasensor for ochratoxin A based on the use of a gold electrode modified with aptamer, complementary DNA, SWCNTs and the redox marker Methylene Blue, Microchimica Acta 184 (2017) 1151-1159. https://doi.org/10.1007/s00604-017-2113-7

J. Zhang, Y. Chai, R. Yuan, Y. Yuan, L. Bai, S. Xie, A highly sensitive electrochemical aptasensor for thrombin detection using functionalized mesoporous silica@multiwalled carbon nanotubes as signal tags and DNAzyme signal amplification, Analyst 138 (2013) 6938-6945. https://doi.org/10.1039/c3an01587d

Published

06-10-2022

How to Cite

Zakiyyah, S. N., Eddy, D. R., Firdaus, M. L., Subroto, T., & Hartati, Y. W. (2022). Screen-printed carbon electrode/natural silica-ceria nanocomposite for electrochemical aptasensor application: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(6), 1225–1242. https://doi.org/10.5599/jese.1455

Issue

Section

Electrochemical Science