Ion-exchange membranes for blue energy generation: A short overview focused on nanocomposite
Review paper
DOI:
https://doi.org/10.5599/jese.1447Keywords:
Salinity gradient energy, electrochemical properties, membrane fabrication, reverse electrodialysis
Abstract
Blue energy can be harvested from salinity gradients between saline water and freshwater by reverse electrodialysis (RED). RED as a conversion technique to generate blue energy has received increasing attention in recent decades. As part of the RED system, ion exchange membranes (IEMs) are key elements to the success of future blue energy generation. However, its suboptimal performance often limits the applications and stagnates the development of the technology. The key properties of IEMs include ion exchange capacity, permselectivity, and electrical resistance. The enhancement of such physical and electrochemical properties is crucial for studying energy production with acceptable output efficiency on a commercial scale. Recently, many studies have tried blending nanotechnology into the membrane fabrication process. Hybridizing inorganic nanomaterials with an organic polymeric material showed the great potential of improving electrical conductivity and permselectivity, as well as other membrane characteristics for power performance. In this short review, recent developments on the IEM synthesis in association with potential nanomaterials are reviewed and raising issues regarding the application and commercialization of RED-based energy production are discussed.
Downloads
References
B. E. Logan, M. Elimelech, Nature 488 (2012) 313-319. https://doi.org/10.1038/nature11477
G. Z. Ramon, B. J. Feinberg, E. M. V. Hoek, 4(11) (2011) 4423-4434. https://doi.org/10.1039/C1EE01913A
J. G. Hong, W. Zhang, J. Luo, J. Chen, Applied Energy 110 (2013) 244-251. https://doi.org/10.1016/j.apenergy.2013.04.015
Salinity Gradient Energy: Technology Brief, IRENA Ocean Energy Technology Brief 2, 2014. https://www.irena.org/publications/2014/Jun/Salinity-gradient
P. Długołęcki, K. Nymeijer, S. Metz, M. Wessling, Journal of Membrane Science 319(1-2) (2008) 214-222. https://doi.org/10.1016/j.memsci.2008.03.037
E. Güler, R. Elizen, D.A. Vermaas, M. Saakes, K. Nijmeijer, Journal of Membrane Science 446 (2013) 266-276. https://doi.org/10.1016/j.memsci.2013.06.045
D. A. Vermaas, D. Kunteng, M. Saakes, K. Nijmeijer, Water Research 47(3) (2013) 1289-1298. https://doi.org/10.1016/j.watres.2012.11.053
N.Y. Yip, D. A. Vermaas, K. Nijmeijer, M. Elimelech, Environmental Science & Technology 48(9) (2014) 4925-4936. https://doi.org/10.1021/es5005413
M. Turek, B. Bandura, Desalination 205(1-3) (2007) 67-74. https://doi.org/10.1016/j.desal.2006.04.041
J. W. Post, C. H. Goeting, J. Valk, S. Goinga, J. Veerman, H. V. M. Hamelers, P. J. F. M. Hack, Desalination and Water Treatment 16(1-3) (2010) 182-193. https://doi.org/10.5004/dwt.2010.1093
J. G. Hong, Y. Chen, Journal of Membrane Science 460 (2014) 139-147. https://doi.org/10.1016/j.memsci.2014.02.027
Z. Wu, G. Sun, W. Jin, H. Hou, S. Wang, Q. Xin, Journal of Membrane Science 313(1-2) (2008) 336-343. https://doi.org/10.1016/j.memsci.2008.01.027
R. Vinodh, A. Ilakkiya, S. Elamathi, D. Sangeetha, Materials Science and Engineering: B 167 (1) (2010) 43-50. https://doi.org/10.1016/j.mseb.2010.01.025
C. Zhao, W. Ma, W. Sun, H. Na, Journal of Applied Polymer Science 131(10) (2014) 40256. https://doi.org/10.1002/app.40256
M. R. Hibbs, C. H. Fujimoto, C. J. Cornelius, Macromolecules 42(21) (2009) 8316-8321. https://doi.org/10.1021/ma901538c
Y. Xiong, Q. L. Liu, Q. H. Zeng, Journal of Power Sources 193(2) (2009) 541-546. https://doi.org/10.1016/j.jpowsour.2009.04.043
J. Fang, P. K. Shen, Journal of Membrane Science 285(1-2) (2006) 317-322. https://doi.org/10.1016/j.memsci.2006.08.037
L. Schadler, in: Nanocomposite Science and Technology, P. M. Ajayan, L. S . Schadler, P. V. Braun (Eds.), Chap. 2, Wiley-VCH, Weinheim, Germany, 2003. https://doi.org/10.1002/3527602127.ch2
B. P. Tripathi, V. K. Shahi, Progress in Polymer Science 36(7) (2011) 945-979. https://doi.org/10.1016/j.progpolymsci.2010.12.005
K. A. Mauritz, Materials Science and Engineering: C 6(2-3) (1998) 121-133. https://doi.org/10.1016/S0928-4931(98)00042-3
H. Gao, B. Zhang, X. Tong, Y. Chen, Journal of Membrane Science 567 (2018) 68-75. https://doi.org/10.1016/j.memsci.2018.09.035
S. Mulyati, R. Takagi, A. Fujii, Y. Ohmukai, T. Maruyama, H. Matsuyama, Journal of Membrane Science 417-418 (2012) 137-143. https://doi.org/10.1016/j.memsci.2012.06.024
S. Mulyati, R. Takagi, A. Fujii, Y. Ohmukai, H. Matsuyama, Journal of Membrane Science 431 (2013) 113-120. https://doi.org/10.1016/j.memsci.2012.12.022
G. Decher, Science 277(5330) (1997) 1232-1237. https://doi.org/10.1126/science.277.5330.1232
C. W. Xing, D. Li, C. B. Liu, X. Kong, X. Y. Li, Y. L. Chen, J. Z. Jiang, Chinese Journal of Inorganic Chemistry 33(11) (2017) 2110-2116. https://doi.org/10.11862/cjic.2017.230 (in Chinese)
E. Guler, Y. Zhang, M. Saakes, K. Nijmeier, ChemSusChem 5(11) (2012) 2262-2270. https://doi.org/10.1002/cssc.201200298
C. Tristán, M. Fallanza, R. Ibáñez, I. Ortiz, Desalination 496 (2020) 114699. https://doi.org/10.1016/j.desal.2020.114699
E. Mercer, C.J. Davey, D. Azzini, A.L. Eusebi, R. Tierney, L. Williams, Y. Jiang, A. Parker, A. Kolios, S. Tyrrel, E. Cartmell, M. Pidou, E.J. McAdam, Journal of Membrane Science 584 (2019) 343-352. https://doi.org/10.1016/j.memsci.2019.05.010
S.M. Hosseini, E. Jashni, M. Habibi, M. Nemati, B. Van der Bruggen, Journal of Membrane Science 541 (2017) 641-652. https://doi.org/https://doi.org/10.1016/j.memsci.2017.07.022
J. G. Hong, T.-W. Park, Y. Dhadake, Journal of Electroanalytical Chemistry 850 (2019) 113437. https://doi.org/10.1016/j.jelechem.2019.113437
E. Jashni, S. M. Hosseini, J. Shen, Ionics 26(2) (2020) 861-874. https://doi.org/10.1007/s11581-019-03218-8
A. Zehra, M. M. Ali Khan, Rafiuddin, Journal of Solid State Electrochemistry 25(2) (2021) 489-504. https://doi.org/10.1007/s10008-020-04821-w
L. Sun, S. Wang, W. Jin, H. Hou, L. Jiang, G. Sun, International Journal of Hydrogen Energy 35(22) (2010) 12461-12468. https://doi.org/10.1016/j.ijhydene.2010.07.177
Y. Heo, H. Im, J. Kim, Journal of Membrane Science 425-426 (2013) 11-22. https://doi.org/https://doi.org/10.1016/j.memsci.2012.09.019
F. Chu, B. Lin, T. Feng, C. Wang, S. Zhang, N. Yuan, Z. Liu, J. Ding, Journal of Membrane Science 496 (2015) 31-38. https://doi.org/http://dx.doi.org/10.1016/j.memsci.2015.09.001
X. He, G. He, A. Zhao, F. Wang, X. Mao, Y. Yin, L. Cao, B. Zhang, H. Wu, Z. Jiang, ACS Applied Materials & Interfaces 9(33) (2017) 27676-27687. https://doi.org/10.1021/acsami.7b06424
S. Gahlot, P. P. Sharma, H. Gupta, V. Kulshrestha, P. K. Jha, RSC Advances 4 (47) (2014) 24662-24670. https://doi.org/10.1039/C4RA02216E
S. Siracusano, V. Baglio, M. A. Navarra, S. Panero, V. Antonucci, A. S. Aricò, International Journal of Electrochemical Science 7(2) (2012) 1532-1542. http://www.electrochemsci.org/papers/vol7/7021532.pdf
E. Parvizian, S. M. Hosseini, A. R. Hamidi, S. S. Madaeni, A. R. Moghadassi, Journal of the Taiwan Institute of Chemical Engineers 45(6) (2014) 2878-2887. https://doi.org/10.1016/j.jtice.2014.08.017
P. K. Leung, Q. Xu, T. S. Zhao, L. Zeng, C. Zhang, Electrochimica Acta 105 (2013) 584-592. https://doi.org/10.1016/j.electacta.2013.04.155
C. Klaysom, R. Marschall, L. Wang, B. P. Ladewig, G. Q. Max Lu, Journal of Materials Chemistry 20(22) (2010) 4669-4674. https://doi.org/10.1039/b925357b
C.-C. Yang, S.-J. Chiu, W.-C. Chien, S.-S. Chiu, Journal of Power Sources 195(8) (2010) 2212-2219. https://doi.org/10.1016/j.jpowsour.2009.10.091
Z. Wang, H. Tang, H. Zhang, M. Lei, R. Chen, P. Xiao, M. Pan, Journal of Membrane Science 421-422 (2012) 201-210. https://doi.org/10.1016/j.memsci.2012.07.014
S. M. Hosseini, S. S. Madaeni, A. R. Heidari, A. Amirimehr, Desalination 284 (2012) 191-199. https://doi.org/10.1016/j.desal.2011.08.057
S. Yun, H. Im, Y. Heo, J. Kim, Journal of Membrane Science 380(1-2) (2011) 208-215. https://doi.org/10.1016/j.memsci.2011.07.010
R. A. Tufa, T. Piallat, J. Hnát, E. Fontananova, M. Paidar, D. Chanda, E. Curcio, G. di Profio, K. Bouzek, Chemical Engineering Journal 380 (2020) 122461. https://doi.org/10.1016/j.cej.2019.122461
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
National Research Foundation of Korea
Grant numbers NRF-2020R1A4A3079510;NRF-2022R1I1A3059557