Ion-exchange membranes for blue energy generation: A short overview focused on nanocomposite

Review paper

Authors

  • Jin Gi Hong Department of Civil Engineering and Construction Engineering Management, California State University, Long Beach, CA, 90840, United States https://orcid.org/0000-0003-4414-9053
  • Tae-Won Park Department of Earth Science Education, Chonnam National University, Gwangju, South Korea https://orcid.org/0000-0002-1373-8632

DOI:

https://doi.org/10.5599/jese.1447

Keywords:

Salinity gradient energy, electrochemical properties, membrane fabrication, reverse electrodialysis
Graphical Abstract

Abstract

Blue energy can be harvested from salinity gradients between saline water and freshwater by reverse electrodialysis (RED). RED as a conversion technique to generate blue energy has received increasing attention in recent decades. As part of the RED system, ion exchange membranes (IEMs) are key elements to the success of future blue energy generation. However, its suboptimal performance often limits the applications and stagnates the deve­lopment of the technology. The key properties of IEMs include ion exchange capacity, perm­selectivity, and electrical resistance. The enhancement of such physical and electrochemical properties is crucial for studying energy production with acceptable output efficiency on a commercial scale. Recently, many studies have tried blending nanotechnology into the membrane fabrication process. Hybridizing inorganic nanomaterials with an organic polymeric material showed the great potential of improving electrical conductivity and perm­selectivity, as well as other membrane characteristics for power performance. In this short review, recent developments on the IEM synthesis in association with potential nanomaterials are reviewed and raising issues regarding the application and commercialization of RED-based energy production are discussed.

Downloads

Download data is not yet available.

References

B. E. Logan, M. Elimelech, Nature 488 (2012) 313-319. https://doi.org/10.1038/nature11477

G. Z. Ramon, B. J. Feinberg, E. M. V. Hoek, 4(11) (2011) 4423-4434. https://doi.org/10.1039/C1EE01913A

J. G. Hong, W. Zhang, J. Luo, J. Chen, Applied Energy 110 (2013) 244-251. https://doi.org/10.1016/j.apenergy.2013.04.015

Salinity Gradient Energy: Technology Brief, IRENA Ocean Energy Technology Brief 2, 2014. https://www.irena.org/publications/2014/Jun/Salinity-gradient

P. Długołęcki, K. Nymeijer, S. Metz, M. Wessling, Journal of Membrane Science 319(1-2) (2008) 214-222. https://doi.org/10.1016/j.memsci.2008.03.037

E. Güler, R. Elizen, D.A. Vermaas, M. Saakes, K. Nijmeijer, Journal of Membrane Science 446 (2013) 266-276. https://doi.org/10.1016/j.memsci.2013.06.045

D. A. Vermaas, D. Kunteng, M. Saakes, K. Nijmeijer, Water Research 47(3) (2013) 1289-1298. https://doi.org/10.1016/j.watres.2012.11.053

N.Y. Yip, D. A. Vermaas, K. Nijmeijer, M. Elimelech, Environmental Science & Technology 48(9) (2014) 4925-4936. https://doi.org/10.1021/es5005413

M. Turek, B. Bandura, Desalination 205(1-3) (2007) 67-74. https://doi.org/10.1016/j.desal.2006.04.041

J. W. Post, C. H. Goeting, J. Valk, S. Goinga, J. Veerman, H. V. M. Hamelers, P. J. F. M. Hack, Desalination and Water Treatment 16(1-3) (2010) 182-193. https://doi.org/10.5004/dwt.2010.1093

J. G. Hong, Y. Chen, Journal of Membrane Science 460 (2014) 139-147. https://doi.org/10.1016/j.memsci.2014.02.027

Z. Wu, G. Sun, W. Jin, H. Hou, S. Wang, Q. Xin, Journal of Membrane Science 313(1-2) (2008) 336-343. https://doi.org/10.1016/j.memsci.2008.01.027

R. Vinodh, A. Ilakkiya, S. Elamathi, D. Sangeetha, Materials Science and Engineering: B 167 (1) (2010) 43-50. https://doi.org/10.1016/j.mseb.2010.01.025

C. Zhao, W. Ma, W. Sun, H. Na, Journal of Applied Polymer Science 131(10) (2014) 40256. https://doi.org/10.1002/app.40256

M. R. Hibbs, C. H. Fujimoto, C. J. Cornelius, Macromolecules 42(21) (2009) 8316-8321. https://doi.org/10.1021/ma901538c

Y. Xiong, Q. L. Liu, Q. H. Zeng, Journal of Power Sources 193(2) (2009) 541-546. https://doi.org/10.1016/j.jpowsour.2009.04.043

J. Fang, P. K. Shen, Journal of Membrane Science 285(1-2) (2006) 317-322. https://doi.org/10.1016/j.memsci.2006.08.037

L. Schadler, in: Nanocomposite Science and Technology, P. M. Ajayan, L. S . Schadler, P. V. Braun (Eds.), Chap. 2, Wiley-VCH, Weinheim, Germany, 2003. https://doi.org/10.1002/3527602127.ch2

B. P. Tripathi, V. K. Shahi, Progress in Polymer Science 36(7) (2011) 945-979. https://doi.org/10.1016/j.progpolymsci.2010.12.005

K. A. Mauritz, Materials Science and Engineering: C 6(2-3) (1998) 121-133. https://doi.org/10.1016/S0928-4931(98)00042-3

H. Gao, B. Zhang, X. Tong, Y. Chen, Journal of Membrane Science 567 (2018) 68-75. https://doi.org/10.1016/j.memsci.2018.09.035

S. Mulyati, R. Takagi, A. Fujii, Y. Ohmukai, T. Maruyama, H. Matsuyama, Journal of Membrane Science 417-418 (2012) 137-143. https://doi.org/10.1016/j.memsci.2012.06.024

S. Mulyati, R. Takagi, A. Fujii, Y. Ohmukai, H. Matsuyama, Journal of Membrane Science 431 (2013) 113-120. https://doi.org/10.1016/j.memsci.2012.12.022

G. Decher, Science 277(5330) (1997) 1232-1237. https://doi.org/10.1126/science.277.5330.1232

C. W. Xing, D. Li, C. B. Liu, X. Kong, X. Y. Li, Y. L. Chen, J. Z. Jiang, Chinese Journal of Inorganic Chemistry 33(11) (2017) 2110-2116. https://doi.org/10.11862/cjic.2017.230 (in Chinese)

E. Guler, Y. Zhang, M. Saakes, K. Nijmeier, ChemSusChem 5(11) (2012) 2262-2270. https://doi.org/10.1002/cssc.201200298

C. Tristán, M. Fallanza, R. Ibáñez, I. Ortiz, Desalination 496 (2020) 114699. https://doi.org/10.1016/j.desal.2020.114699

E. Mercer, C.J. Davey, D. Azzini, A.L. Eusebi, R. Tierney, L. Williams, Y. Jiang, A. Parker, A. Kolios, S. Tyrrel, E. Cartmell, M. Pidou, E.J. McAdam, Journal of Membrane Science 584 (2019) 343-352. https://doi.org/10.1016/j.memsci.2019.05.010

S.M. Hosseini, E. Jashni, M. Habibi, M. Nemati, B. Van der Bruggen, Journal of Membrane Science 541 (2017) 641-652. https://doi.org/https://doi.org/10.1016/j.memsci.2017.07.022

J. G. Hong, T.-W. Park, Y. Dhadake, Journal of Electroanalytical Chemistry 850 (2019) 113437. https://doi.org/10.1016/j.jelechem.2019.113437

E. Jashni, S. M. Hosseini, J. Shen, Ionics 26(2) (2020) 861-874. https://doi.org/10.1007/s11581-019-03218-8

A. Zehra, M. M. Ali Khan, Rafiuddin, Journal of Solid State Electrochemistry 25(2) (2021) 489-504. https://doi.org/10.1007/s10008-020-04821-w

L. Sun, S. Wang, W. Jin, H. Hou, L. Jiang, G. Sun, International Journal of Hydrogen Energy 35(22) (2010) 12461-12468. https://doi.org/10.1016/j.ijhydene.2010.07.177

Y. Heo, H. Im, J. Kim, Journal of Membrane Science 425-426 (2013) 11-22. https://doi.org/https://doi.org/10.1016/j.memsci.2012.09.019

F. Chu, B. Lin, T. Feng, C. Wang, S. Zhang, N. Yuan, Z. Liu, J. Ding, Journal of Membrane Science 496 (2015) 31-38. https://doi.org/http://dx.doi.org/10.1016/j.memsci.2015.09.001

X. He, G. He, A. Zhao, F. Wang, X. Mao, Y. Yin, L. Cao, B. Zhang, H. Wu, Z. Jiang, ACS Applied Materials & Interfaces 9(33) (2017) 27676-27687. https://doi.org/10.1021/acsami.7b06424

S. Gahlot, P. P. Sharma, H. Gupta, V. Kulshrestha, P. K. Jha, RSC Advances 4 (47) (2014) 24662-24670. https://doi.org/10.1039/C4RA02216E

S. Siracusano, V. Baglio, M. A. Navarra, S. Panero, V. Antonucci, A. S. Aricò, International Journal of Electrochemical Science 7(2) (2012) 1532-1542. http://www.electrochemsci.org/papers/vol7/7021532.pdf

E. Parvizian, S. M. Hosseini, A. R. Hamidi, S. S. Madaeni, A. R. Moghadassi, Journal of the Taiwan Institute of Chemical Engineers 45(6) (2014) 2878-2887. https://doi.org/10.1016/j.jtice.2014.08.017

P. K. Leung, Q. Xu, T. S. Zhao, L. Zeng, C. Zhang, Electrochimica Acta 105 (2013) 584-592. https://doi.org/10.1016/j.electacta.2013.04.155

C. Klaysom, R. Marschall, L. Wang, B. P. Ladewig, G. Q. Max Lu, Journal of Materials Chemistry 20(22) (2010) 4669-4674. https://doi.org/10.1039/b925357b

C.-C. Yang, S.-J. Chiu, W.-C. Chien, S.-S. Chiu, Journal of Power Sources 195(8) (2010) 2212-2219. https://doi.org/10.1016/j.jpowsour.2009.10.091

Z. Wang, H. Tang, H. Zhang, M. Lei, R. Chen, P. Xiao, M. Pan, Journal of Membrane Science 421-422 (2012) 201-210. https://doi.org/10.1016/j.memsci.2012.07.014

S. M. Hosseini, S. S. Madaeni, A. R. Heidari, A. Amirimehr, Desalination 284 (2012) 191-199. https://doi.org/10.1016/j.desal.2011.08.057

S. Yun, H. Im, Y. Heo, J. Kim, Journal of Membrane Science 380(1-2) (2011) 208-215. https://doi.org/10.1016/j.memsci.2011.07.010

R. A. Tufa, T. Piallat, J. Hnát, E. Fontananova, M. Paidar, D. Chanda, E. Curcio, G. di Profio, K. Bouzek, Chemical Engineering Journal 380 (2020) 122461. https://doi.org/10.1016/j.cej.2019.122461

Downloads

Published

31-07-2022 — Updated on 31-07-2022

How to Cite

Hong, J. G., & Park, T.-W. (2022). Ion-exchange membranes for blue energy generation: A short overview focused on nanocomposite: Review paper. Journal of Electrochemical Science and Engineering, 13(2), 333–345. https://doi.org/10.5599/jese.1447

Issue

Section

Electrochemical Engineering

Funding data