Understanding cold spray technology for hydroxyapatite deposition

Review paper


  • Gaurav Prashar Department of Mechanical Engineering, Rayat Bahra Institute of Engineering and Nanotechnology, Hoshiarpur, Punjab, India https://orcid.org/0000-0002-3549-5838
  • Hitesh Vasudev Department of Mechanical Engineering, Rayat Bahra Institute of Engineering and Nanotechnology, Hoshiarpur, Punjab, India https://orcid.org/0000-0002-1668-8765




Cold spraying, high velocity oxygen fuel spraying, plasma spraying, hydroxyapatite coatings
Graphical Abstract


The standard method for applying hydroxyapatite (HAp) coatings to biomedical implants is plasma spraying. However, due to the high temperature of the plasma, these coatings frequently experience negative effects like evaporation, phase change, de-bonding, gas release, and residual stresses. This paper summarizes a revolutionary technique known as a cold spray (CS), which allows HAp coatings to be applied at temperatures well below their melting point. CS has several advantages over conventional high-temperature technologies, and it seems to be approaching parity with other older methods. When applied using the CS approach, the HAp coatings enhance bioactivity, increase corrosion resistance, and main­tain the characteristics of calcium phosphate ceramics. This study aims to give a concise and comprehensive overview of HAp-based materials, including substituted-HAp and HAp/poly­mer composites, and their applications in bone tissue engineering. To better understand the advantages of CS technology, a comparison of CS, high-velocity oxy-fuel (HVOF), and plasma spray is given at the end. The perspective and difficulties were also highlighted.


Download data is not yet available.


G. Prashar, H. Vasudev, Thermal sprayed composite coatings for biomedical implants: A brief review, Journal of Thermal Spray and Engineering 2 (2020) 50-55. https://doi.org/10.52687/2582-1474/213

G. Prashar, H. Vasudev, L. Thakur, A. Bansal, Performance pf Thermally Sprayed Hydroxyapatite Coatings for Biomedical Implants: A Comprehensive Review, Surface Review and Letters 30(01) (2022) 2241001. https://doi.org/10.1142/S0218625X22410013

V. Uskoković, I. Janković-Častvan, V. M. Wu, Bone mineral crystallinity governs the orches¬tration of ossification and resorption during bone remodeling, ACS Biomaterials Science & Engineering 5 (2019) 3483-3498. https://doi.org/10.1021/acsbiomaterials.9b00255

D. Wang, J. Jang, K. Kim, J. Kim, C.B. Park, “Tree to Bone”: Lignin/Polycaprolactone Nanofibers for Hydroxyapatite Biomineralization, Biomacromolecules 20 (2019) 2684-2693. https://doi.org/10.1021/acs.biomac.9b00451

C. Hu, D. Ashok, D. R. Nisbet, V. Gautam, Bioinspired surface modification of orthopedic implants for bone tissue engineering, Biomaterials 219 (2019) 119366. https://doi.org/10.1016/j.biomaterials.2019.119366

Z.-Y. Qiu, Y. Cui, X.-M. Wang, Natural Bone Tissue and Its Biomimetic, in: Mineralized Collagen Bone Graft Substitutes, Elsevier, 2019, pp. 1-22. https://doi.org/10.1016/B978-0-08-102717-2.00001-1

S. Türk, İ. Altınsoy, G. Çelebi Efe, M. Ipek, M. Özacar, C. Bindal, Effect of Solution and Calcination Time on Sol-gel Synthesis of Hydroxyapatite, Journal of Bionic Engineering 16 (2019) 311-318. https://doi.org/10.1007/s42235-019-0026-3

R. Narayanan, S.K. Seshadri, T. Y. Kwon, K. H. Kim, Calcium phosphate-based coatings on titanium and its alloys, Journal of Biomedical Materials Research Part B: Applied Biomaterials 85B (2008) 279-299. https://doi.org/10.1002/jbm.b.30932

B. A. Jerri Al-Bakhsh, F. Shafiei, A. Hashemian, K. Shekofteh, B. Bolhari, M. Behroozibakhsh, In-vitro bioactivity evaluation and physical properties of an epoxy-based dental sealer reinforced with synthesized fluorine-substituted hydroxyapatite, hydroxyapatite and bioactive glass nanofillers, Bioactive Materials 4 (2019) 322-333. https://doi.org/10.1016/j.bioactmat.2019.10.004

R. Radha, D. Sreekanth, Mechanical and corrosion behaviour of hydroxyapatite reinforced Mg-Sn alloy composite by squeeze casting for biomedical applications, Journal of Magnesium and Alloys 8 (2020) 452-460. https://doi.org/10.1016/j.jma.2019.05.010

E. Fiume, G. Magnaterra, A. Rahdar, E. Verné, F. Baino, Hydroxyapatite for Biomedical Applications: A Short Overview, Ceramics 4 (2021) 542-563. https://doi.org/10.3390/ceramics4040039

R. Setiawati, P. Rahardjo, Bone Development and Growth, in: Osteogenesis and Bone Regeneration, IntechOpen, 2019. https://doi.org/10.5772/intechopen.82452

S. Bose, S. Tarafder, A. Bandyopadhyay, Hydroxyapatite coatings for metallic implants, in: Hydroxyapatite (Hap) for biomedical applications, Woodhead Publishing, (2015) pp. 143-157. https://doi.org/10.1016/B978-1-78242-033-0.00007-9

L. Sun, C. C. Berndt, K. A. Gross, A. Kucuk, Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: A review, Journal of Biomedical Materials Research 58 (2001) 570-592. https://doi.org/10.1002/jbm.1056

E. Mohseni, E. Zalnezhad, A. R. Bushroa, Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant, International Journal of Adhesion and Adhesives 48 (2014) 238-257. https://doi.org/10.1016/j.ijadhadh.2013.09.030

Y. C. Tsui, C. Doyle, T.. Clyne, Plasma sprayed hydroxyapatite coatings on titanium substrates Part 2: optimisation of coating properties, Biomaterials 19 (1998) 2031-2043. https://doi.org/10.1016/S0142-9612(98)00104-5

H.-W. Kim, G. Georgiou, J. C. Knowles, Y.-H. Koh, H.-E. Kim, Calcium phosphates and glass composite coatings on zirconia for enhanced biocompatibility, Biomaterials 25 (2004) 4203-4213 https://doi.org/10.1016/j.biomaterials.2003.10.094

S. V. Dorozhkin, Calcium orthophosphate coatings, films and layers, Progress in Biomaterials 1 (2012) 1. https://doi.org/10.1186/2194-0517-1-1

A. Singh, G. Singh, V. Chawla, Influence of post coating heat treatment on microstructural, mechanical and electrochemical corrosion behaviour of vacuum plasma sprayed reinforced hydroxyapatite coatings, Journal of the Mechanical Behavior of Biomedical Materials 85 (2018) 20-36. https://doi.org/10.1016/j.jmbbm.2018.05.030

A. M. Vilardell, N. Cinca, I. Pacheco, C. Santiveri, S. Dosta, I. G. Cano, J. M. Guilemany, M. Sarret, C. Muller, Hierarchical structures of anodised cold gas sprayed titanium coatings, Transactions of the IMF 96 (2018) 71-78. https://doi.org/10.1080/00202967.2018.1419625

F. Fazan, P. M. Marquis, Dissolution behavior of plasma-sprayed hydroxyapatite coatings, Journal of materials science: Materials in Medicine (12) (2000) 787-792. https://doi.org/10.1023/A:1008901512273

L. Sun, C. C. Berndt, K. A. Khor, H. N. Cheang, K. A. Gross, Surface characteristics and dissolution behavior of plasma-sprayed hydroxyapatite coating, Journal of Biomedical Materials Research 62 (2002) 228-236. https://doi.org/10.1002/jbm.10315

K. A. Gross, C. C. Berndt, H. Herman, Amorphous phase formation in plasma-sprayed hydroxyapatite coatings, Journal of Biomedical Materials Research 39 (1998) 407-414. https://doi.org/10.1002/(SICI)1097-4636(19980305)39:3<407::AID-JBM9>3.0.CO;2-N

J. Fernández, M. Gaona, J. M. Guilemany, Effect of Heat Treatments on HVOF Hydroxyapatite Coatings, Journal of Thermal Spray Technology 16 (2007) 220-228. https://doi.org/10.1007/s11666-007-9034-7

M. Gaona Latorre, Recubrimientos biocompatibles obtenidos por Proyección Térmica y estudio in vitro de la función osteoblástica, PhD thesis, Universitat de Barcelona (2007) http://hdl.handle.net/2445/36451

B. D. Hahn, D. S. Park, J. J. Choi, J. Ryu, W. H. Yoon, K. H. Kim, C. Park, H. E. Kim, Dense Nanostructured Hydroxyapatite Coating on Titanium by Aerosol Deposition, Journal of the American Ceramic Society 92 (2009) 683-687. https://doi.org/10.1111/j.1551-2916.2008.02876.x

D. Park, I. Kim, H. Kim, A. H. K. Chou, B. Hahn, L. Li, S. Hwang, Improved biocompatibility of hydroxyapatite thin film prepared by aerosol deposition, Journal of Biomedical Materials Research Part B: Applied Biomaterials 94B (2010) 353-358. https://doi.org/10.1002/jbm.b.31658

M. S. Kim, D. M. Chun, J. O. Choi, J. C. Lee, K. S. Kim, Y. H. Kim, C. S. Lee, S. H. Ahn, Room temperature deposition of TiO2 using nano particle deposition system (NPDS): Applica¬tion to dye-sensitized solar cell (DSSC), International Journal of Precision Engineering and Manufacturing 12 (2011) 749-752. https://doi.org/10.1007/s12541-011-0099-3

D. Guo, M. Kazasidis, A. Hawkins, N. Fan, Z. Leclerc, D. MacDonald, A. Nastic, R. Nikbakht, R. Ortiz-Fernandez, S. Rahmati, M. Razavipour, P. Richer, S. Yin, R. Lupoi, B. Jodoin, Cold Spray: Over 30 Years of Development Toward a Hot Future, Journal of Thermal Spray Technology 31 (2022) 866-907. https://doi.org/10.1007/s11666-022-01366-4

G. Prashar, H. Vasudev, L. Thakur, Thermal Spraying Fundamentals: Process Applications, Challenges, and Future Market, in: Thermal Spray Coatings, CRC Press, 2021, 1-36. https://www.taylorfrancis.com/chapters/edit/10.1201/9781003213185-1/thermal-spraying-fundamentals-gaurav-prashar-hitesh-vasudev-lalit-thakur

N. Cinca, A. M. Vilardell, S. Dosta, A. Concustell, I. Garcia Cano, J. M. Guilemany, S. Estradé, A. Ruiz, F. Peiró, A New Alternative for Obtaining Nanocrystalline Bioactive Coatings: Study of Hydroxyapatite Deposition Mechanisms by Cold Gas Spraying, Journal of the American Ceramic Society 99 (2016) 1420-1428. https://doi.org/10.1111/jace.14076

A. M. Vilardell, N. Cinca, I. G. Cano, A. Concustell, S. Dosta, J. M. Guilemany, S. Estradé, A. Ruiz-Caridad, F. Peiró, Dense nanostructured calcium phosphate coating on titanium by cold spray, Journal of the European Ceramic Society 37 (2017) 1747-1755. https://doi.org/10.1016/j.jeurceramsoc.2016.11.040

M. Yamada, H. Isago, K. Shima, H. Nakano, M. Fukumoto, Deposition of TiO2 Ceramic Par-ti¬cles on Cold Spray Process, in Thermal Spray 2010: Proceedings from the Interna¬ti¬onal Ther¬mal Spray Conference, B. R. Marple, A. Agarwal, M. M. Hyland, Y.-C. Lau, C.-J. Li, R. S. Lima, G. Montavon (Eds.), 2010, pp. 172-176. https://doi.org/10.31399/asm.cp.itsc2010p0172

D. Seo, M. Sayar, K. Ogawa, SiO2 and MoSi2 formation on Inconel 625 surface via SiC coating deposited by cold spray, Surface and Coatings Technology 206 (2012) 2851-2858. https://doi.org/10.1016/j.surfcoat.2011.12.010

A. M. Vilardell, N. Cinca, A. Concustell, S. Dosta, I. G. Cano, J. M. Guilemany, Cold spray as an emerging technology for biocompatible and antibacterial coatings: state of art, Journal of Materials Science 50 (2015) 4441-4462. https://doi.org/10.1007/s10853-015-9013-1

D. Arcos, M. Vallet-Regí, Substituted hydroxyapatite coatings of bone implants, Journal of Materials Chemistry B 8 (2020) 1781-1800. https://doi.org/10.1039/C9TB02710F

G. Molino, M.C. Palmieri, G. Montalbano, S. Fiorilli, C. Vitale-Brovarone, Biomimetic and mesoporous nano-hydroxyapatite for bone tissue application: a short review, Biomedical Materials 15 (2020) 022001. https://doi.org/10.1088/1748-605X/ab5f1a

G. Choi, A.H. Choi, L.A. Evans, S. Akyol, B. Ben‐Nissan, A review: Recent advances in sol‐gel‐derived hydroxyapatite nanocoatings for clinical applications, Journal of the American Ceramic Society 103 (2020) 5442-5453. https://doi.org/10.1111/jace.17118

S. Awasthi, S. K. Pandey, E. Arunan, C. Srivastava, A review on hydroxyapatite coatings for the biomedical applications: experimental and theoretical perspectives, Journal of Materials Chemistry B 9 (2021) 228-249. https://doi.org/10.1039/D0TB02407D

H. Singh, T. S. Sidhu, S. B. S. Kalsi, Cold spray technology: future of coating deposition pro-ces¬ses, Frattura Ed Integrità Strutturale 6 (2012) 69-84. https://doi.org/10.3221/IGF-ESIS.22.08

J. M. Miguel, S. Vizcaíno, S. Dosta, N. Cinca, C. Lorenzana, J. M. Guilemany, Recubrimientos de materiales compuestos metal-cerámico obtenidos por nuevas tecnologías de proyección térmica: Proyección fría (CGS) y su resistencia al desgaste, Revista de Metalurgia 47 (2011) 390-401. https://doi.org/10.3989/revmetalm.1045

G. Lewis, Properties of acrylic bone cement: State of the art review, Journal of Biomedical Materials Research 38 (1997) 155-182. https://doi.org/10.1002/(SICI)1097-4636(199722)38:2<155::AID-JBM10>3.0.CO;2-C

Y. C. Tsui, C. Doyle, T. W. Clyne, Plasma sprayed hydroxyapatite coatings on titanium substrates Part 1: Mechanical properties and residual stress levels, Biomaterials 19 (1998) 2015-2029. https://doi.org/10.1016/S0142-9612(98)00103-3

M. Villa, S. Dosta, J. Fernández, J. M. Guilemany, La proyección fría (CGs): Una alternativa a las tecnologías convencionales de deposición, Revista de Metalurgia 48 (2012) 175-191. https://doi.org/10.3989/revmetalm.1111

K. Ishikawa, Y. Miyamoto, M. Nagayama, K. Asaoka, Blast coating method: New method of coating titanium surface with hydroxyapatite at room temperature, Journal of Biomedical Materials Research 38 (1997) 129-134. https://doi.org/10.1002/(SICI)1097-4636(199722)38:2<129::AID-JBM7>3.0.CO;2-S

P. O’Hare, B.J. Meenan, G.A. Burke, G. Byrne, D. Dowling, J. A. Hunt, Biological responses to hydroxyapatite surfaces deposited via a co-incident microblasting technique, Biomaterials 31 (2010) 515-522. https://doi.org/10.1016/j.biomaterials.2009.09.067

U. Gbureck, A. Masten, J. Probst, R. Thull, Tribochemical structuring and coating of implant metal surfaces with titanium oxide and hydroxyapatite layers, Materials Science and Engineering: C 23 (2003) 461-465. https://doi.org/10.1016/S0928-4931(02)00322-3

L. O’Neill, C. O’Sullivan, P. O’Hare, L. Sexton, F. Keady, J. O’Donoghue, Deposition of substituted apatites onto titanium surfaces using a novel blasting process, Surface and Coatings Technology 204 (2009) 484-488. https://doi.org/10.1016/j.surfcoat.2009.08.014

C. O’Sullivan, P. O’Hare, N. D. O’Leary, A. M. Crean, K. Ryan, A. D. W. Dobson, L. O’Neill, Deposition of substituted apatites with anticolonizing properties onto titanium surfaces using a novel blasting process, Journal of Biomedical Materials Research Part B: Applied Biomaterials 95B (2010) 141-149. https://doi.org/10.1002/jbm.b.31694

G. D. Byrne, L. O’Neill, B. Twomey, D. P. Dowling, Comparison between shot peening and abrasive blasting processes as deposition methods for hydroxyapatite coatings onto a titanium alloy, Surface and Coatings Technology 216 (2013) 224-231. https://doi.org/10.1016/j.surfcoat.2012.11.048

D. M. Chun, S. H. Ahn, Deposition mechanism of dry sprayed ceramic particles at room temperature using a nanoparticle deposition system, Acta Materialia 59 (2011) 2693-2703. https://doi.org/10.1016/j.actamat.2011.01.007

D. M. Chun, J. O. Choi, C. S. Lee, S. H. Ahn, Effect of stand-off distance for cold gas spraying of fine ceramic particles (<5μm) under low vacuum and room temperature using nanoparticle deposition system (NPDS), Surface and Coatings Technology 206 (2012) 2125-2132. https://doi.org/10.1016/j.surfcoat.2011.09.043

J. Akedo, Aerosol Deposition of Ceramic Thick Films at Room Temperature: Densification Mechanism of Ceramic Layers, Journal of the American Ceramic Society 89 (2006) 1834-1839. https://doi.org/10.1111/j.1551-2916.2006.01030.x

B. D. Hahn, D. S. Park, J.bJ. Choi, J. Ryu, W.bH. Yoon, K.bH. Kim,C. Park, H.bE. Kim, Dense nanostructured hydroxyapatite coating on titanium by aerosol deposition, Journal of the American Ceramic Society 3 (2009) 683-687. https://doi.org/10.1111/j.1551-2916.2008.02876.x

D. S. Park, I.-S. Kim, H. Kim, A. H. K. Chou, B.-D. Hahn, L.-H. Li, S.-J. Hwang, Improved biocompatibility of hydroxyapatite thin film prepared by aerosol deposition, Journal of Biomedical Materials Research Part B: Applied Biomaterials 94B(2) (2010) 353-358. https://doi.org/10.1002/jbm.b.31658

L. Zhang, W. T. Zhang, Numerical Investigation on Particle Velocity in Cold Spraying of Hydroxyapatite Coating, Advanced Materials Research 188 (2011) 717-722. https://doi.org/10.4028/www.scientific.net/AMR.188.717

R. P. Singh, Numerical evaluation, optimization and mathematical validation of cold spraying of hydroxyapatite using Taguchi approach, International Journal of Engineering Science and Technology 3 (2011) 7006-7015. http://www.ijest.info/docs/IJEST11-03-09-080.pdf

R. P. Singh, U. Batra, Effect of cold spraying parameters and their interaction an hydroxyapatite deposition, Journal of Applied Fluid Mechanics 4 (2013) 555-561. https://doi.org/10.36884/jafm.6.04.21277

Y. W. Song, D. Y. Shan, E. H. Han, Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application, Materials Letters 62 (2008) 3276-3279. https://doi.org/10.1016/j.matlet.2008.02.048

G. Song, Recent Progress in Corrosion and Protection of Magnesium Alloys, Advanced Engineering Materials 7 (2005) 563-586. https://doi.org/10.1002/adem.200500013

F. Witte, N. Hort, C. Vogt, S. Cohen, K. U. Kainer, R. Willumeit, F. Feyerabend, Degradable biomaterials based on magnesium corrosion, Current Opinion in Solid State and Materials Science 12 (2008) 63-72. https://doi.org/10.1016/j.cossms.2009.04.001

J. E. Gray, B. Luan, Protective coatings on magnesium and its alloys — a critical review, Journal of Alloys and Compounds 336 (2002) 88-113. https://doi.org/10.1016/S0925-8388(01)01899-0

A. Choudhuri, P. S. Mohanty, J. Karthikeyan, Bio-ceramic composite coatings by cold spray technology, in Thermal Spray 2099: Proceedings from the International Thermal Spray Conference., Las Vegas, Nevada, USA, May 4–7, 2009, pp 391-396. https://doi.org/10.31399/asm.cp.itsc2009p0391

J. Weng, Q. Liu, J.G.C. Wolke, X. Zhang, K. Degroot, Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid, Biomaterials 15 (1997)1027-1035. https://doi.org/10.1016/S0142-9612(97)00022-7

A. C. W. Noorakma, H. Zuhailawati, V. Aishvarya, B. K. Dhindaw, Hydroxyapatite-Coated Magnesium-Based Biodegradable Alloy: Cold Spray Deposition and Simulated Body Fluid Studies, Journal of Materials Engineering and Performance 22 (2013) 2997-3004. https://doi.org/10.1007/s11665-013-0589-9

M. Hasniyati, H. Zuhailawati, R. Sivakumar, B. K. Dhindaw, S. N. F. M. Noor, Cold spray deposition of hydroxyapatite powder onto magnesium substrates for biomaterial applications, Surface Engineering 31 (2015) 867-874. https://doi.org/10.1179/1743294415Y.0000000068

J. H. Noh, D. W. Kim, An J. S. An, H. R. Chang, D. H. Kim, K. S. Hong, D. K. Chin, Method for modifying the surface area of a bioinert material, US Patent 0009341 A1, January 12, 2012 https://patents.google.com/patent/WO2010093130A2/en

J. H. Lee, H. L. Jang, K. M. Lee, H.-R. Baek, K. Jin, K. S. Hong, J. H. Noh, H.-K. Lee, In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology, Acta Biomaterialia 9 (2013) 6177-6187. https://doi.org/10.1016/j.actbio.2012.11.030

M. W. Chen, J. W. McCauley, D. P. Dandekar, N. K. Bourne, Dynamic plasticity and failure of high-purity alumina under shock loading, Nature Materials 5 (2006) 614-618. https://doi.org/10.1038/nmat1689

A. K. Mukhopadhyay, K. D. Joshi, A. Dey, R. Chakraborty, A. Rav, S. K. Biswas, S. C. Gupta, Shock deformation of coarse grain alumina above Hugoniot elastic limit, Journal of Materials Science 45 (2010) 3635-3651. https://doi.org/10.1007/s10853-010-4409-4

W.-Y. Li, C.-J. Li, G.-J. Yang, Effect of impact-induced melting on interface microstructure and bonding of cold-sprayed zinc coating, Applied Surface Science 257 (2010) 1516-1523. https://doi.org/10.1016/j.apsusc.2010.08.089

A. M. Vilardell, N. Cinca, N. Garcia-Giralt, S. Dosta, I. G. Cano, X. Nogués, J. M. Guilemany, Functionalized coatings by cold spray: An in vitro study of micro- and nanocrystalline hydroxyapatite compared to porous titanium, Materials Science and Engineering: C 87 (2018) 41-49. https://doi.org/10.1016/j.msec.2018.02.009

M. R. Hasniyati, H. Zuhailawati, R. Sivakumar, B. K. Dhindaw, Optimization of multiple responses using overlaid contour plot and steepest methods analysis on hydroxyapatite coated magnesium via cold spray deposition, Surface and Coatings Technology 280 (2015) 250-255. https://doi.org/10.1016/j.surfcoat.2015.09.006

Q.-Y. Chen, Y.-L. Zou, X. Chen, X.-B. Bai, G.-C. Ji, H.-L. Yao, H.-T. Wang, F. Wang, Morphological, structural and mechanical characterization of cold sprayed hydroxyapatite coating, Surface and Coatings Technology 357 (2019) 910-923. https://doi.org/10.1016/j.surfcoat.2018.10.056

M. Gardon, A. Concustell, S. Dosta, N. Cinca, I. G. Cano, J. M. Guilemany, Improved bonding strength of bioactive cermet Cold Gas Spray coatings, Materials Science and Engineering: C 45 (2014) 117-121. https://doi.org/10.1016/j.msec.2014.08.053

X. Zhou, P. Mohanty, Electrochemical behavior of cold sprayed hydroxyapatite/titanium composite in Hanks’ solution, Electrochimica Acta 65 (2012) 134-140. https://doi.org/10.1016/j.electacta.2012.01.018

J. Tang, Z. Zhao, H. Liu, X. Cui, J. Wang, T. Xiong, A novel bioactive Ta/hydroxyapatite composite coating fabricated by cold spraying, Materials Letters 250 (2019) 197-201. https://doi.org/10.1016/j.matlet.2019.04.123

H.-L. Yao, Z.-H. Yi, C. Yao, M.-X. Zhang, H.-T. Wang, S.-B. Li, X.-B. Bai, Q.-Y. Chen, G.-C. Ji, Improved corrosion resistance of AZ91D magnesium alloy coated by novel cold-sprayed Zn-HA/Zn double-layer coatings, Ceramics International 46 (2020) 7687-7693. https://doi.org/10.1016/j.ceramint.2019.11.271

Y. Liu, Z. Dang, Y. Wang, J. Huang, H. Li, Hydroxyapatite/graphene-nanosheet composite coatings deposited by vacuum cold spraying for biomedical applications: Inherited nanostructures and enhanced properties, Carbon 67 (2014) 250-259. https://doi.org/10.1016/j.carbon.2013.09.088

N. Sanpo, M. L. Tan, P. Cheang, K. A. Khor, Antibacterial Property of Cold-Sprayed HA-Ag/PEEK Coating, Journal of Thermal Spray Technology 18 (2009) 10-15. https://doi.org/10.1007/s11666-008-9283-0

H. Qiao, G. Song, Y. Huang, H. Yang, S. Han, X. Zhang, Z. Wang, J. Ma, X. Bu, L. Fu, Si, Sr, Ag co-doped hydroxyapatite/TiO 2 coating: enhancement of its antibacterial activity and osteoinductivity, RSC Advances 9 (2019) 13348-13364. https://doi.org/10.1039/C9RA01168D

H. Qiao, Q. Zou, C. Yuan, X. Zhang, S. Han, Z. Wang, X. Bu, H. Tang, Y. Huang, Composite coatings of lanthanum-doped fluor-hydroxyapatite and a layer of strontium titanate nanotubes: fabrication, bio-corrosion resistance, cytocompatibility and osteogenic differentiation, Ceramics International 44 (2018) 16632-16646. https://doi.org/10.1016/j.ceramint.2018.06.090

Y. Huang, W. Wang, X. Zhang, X. Liu, Z. Xu, S. Han, Z. Su, H. Liu, Y. Gao, H. Yang, A prospective material for orthopedic applications: Ti substrates coated with a composite coating of a titania-nanotubes layer and a silver-manganese-doped hydroxyapatite layer, Ceramics International 44 (2018) 5528-5542. https://doi.org/10.1016/j.ceramint.2017.12.197

H. Shi, Z. Zhou, W. Li, Y. Fan, Z. Li, J. Wei, Hydroxyapatite Based Materials for Bone Tissue Engineering: A Brief and Comprehensive Introduction, Crystals 11 (2021) 149. https://doi.org/10.3390/cryst11020149

Q. Ling Feng, T. Nam Kim, J. Wu, E. Seo Park, J. Ock Kim, D. Young Lim, F. Zhai Cui, Antibacterial effects of Ag-HAp thin films on alumina substrates, Thin Solid Films 335 (1998) 214-219. https://doi.org/10.1016/S0040-6090(98)00956-0

M. Shirkhanzadeh, M. Azadegan, G. Q. Liu, Bioactive delivery systems for the slow release of antibiotics: incorporation of Ag+ ions into micro-porous hydroxyapatite coatings, Materials Letters 24 (1995) 7-12. https://doi.org/10.1016/0167-577X(95)00059-3

S. Dahl, P. Allain, P.. Marie, Y. Mauras, G. Boivin, P. Ammann, Y. Tsouderos, P.. Delmas, C. Christiansen, Incorporation and distribution of strontium in bone, Bone 28 (2001) 446-453. https://doi.org/10.1016/S8756-3282(01)00419-7

N. D. Ravi, R. Balu, T.S. Sampath Kumar, Strontium-Substituted Calcium Deficient Hydroxyapatite Nanoparticles: Synthesis, Characterization, and Antibacterial Properties, Journal of the American Ceramic Society 95 (2012) 2700-2708. https://doi.org/10.1111/j.1551-2916.2012.05262.x

C. Capuccini, P. Torricelli, E. Boanini, M. Gazzano, R. Giardino, A. Bigi, Interaction of Sr-doped hydroxyapatite nanocrystals with osteoclast and osteoblast-like cells, Journal of Biomedical Materials Research Part A 89A (2009) 594-600. https://doi.org/10.1002/jbm.a.31975

Y. Li, S. Shen, L. Zhu, S. Cai, Y. Jiang, R. Ling, S. Jiang, Y. Lin, S. Hua, G. Xu, In vitro degradation and mineralization of strontium-substituted hydroxyapatite coating on magnesium alloy synthesized via hydrothermal route, Journal of the Ceramic Society of Japan 127 (2019) 158-164. https://doi.org/10.2109/jcersj2.18170

G. Borkow, J. Gabbay, Copper as a Biocidal Tool, Current Medicinal Chemistry 12 (2005) 2163-2175 https://doi.org/10.2174/0929867054637617.

C. Wu, Y. Zhou, M. Xu, P. Han, L. Chen, J. Chang, Y. Xiao, Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity, Biomaterials 34 (2013) 422-433. https://doi.org/10.1016/j.biomaterials.2012.09.066

A. Ewald, C. Käppel, E. Vorndran, C. Moseke, M. Gelinsky, U. Gbureck, The effect of Cu(II)-loaded brushite scaffolds on growth and activity of osteoblastic cells, Journal of Biomedical Materials Research Part A 100(9)(2012) 2392-2400. https://doi.org/10.1002/jbm.a.34184

M. Pujari, P. N. Patel, Strontium-copper-calcium hydroxyapatite solid solutions: Preparation, infrared, and lattice constant measurements, Journal of Solid State Chemistry 83 (1989) 100-104. https://doi.org/10.1016/0022-4596(89)90058-3

S. Shanmugam, B. Gopal, Copper substituted hydroxyapatite and fluorapatite: Synthesis, characterization and antimicrobial properties, Ceramics International 40 (2014) 15655-15662. https://doi.org/10.1016/j.ceramint.2014.07.086

A. V. Lyasnikova, O. A. Markelova, O. A. Dudareva, V. N. Lyasnikov, A. P. Barabash, S. P. Shpinyak, Comprehensive Characterization of Plasma-Sprayed Coatings Based Silver- and Copper-Substituted Hydroxyapatite, Powder Metallurgy and Metal Ceramics 55 (2016) 328-333. https://doi.org/10.1007/s11106-016-9809-9

R. Drevet, Y. Zhukova, S. Dubinskiy, A. Kazakbiev, V. Naumenko, M. Abakumov, J. Fauré, H. Benhayoune, S. Prokoshkin, Electrodeposition of cobalt-substituted calcium phosphate coatings on Ti22Nb6Zr alloy for bone implant applications, Journal of Alloys and Compounds 793 (2019) 576-582. https://doi.org/10.1016/j.jallcom.2019.04.180

K. Prem Ananth, J. Sun, J. Bai, Superior corrosion protection and in vitro biocompatibility of Na-HAp/CS composite coating on PoPD-coated 316L SS, Materials Today Chemistry 10 (2018) 153-166. https://doi.org/10.1016/j.mtchem.2018.08.001

K. Ananth, J. Sun, J. Bai, An Innovative Approach to Manganese-Substituted Hydroxyapatite Coating on Zinc Oxide-Coated 316L SS for Implant Application, International Journal of Molecular Sciences 19 (2018) 2340. https://doi.org/10.3390/ijms19082340

Y. Lin, Z. Yang, J. Cheng, Preparation, Characterization and Antibacterial Property of Cerium Substituted Hydroxyapatite Nanoparticles, Journal of Rare Earths 25 (2007) 452-456. https://doi.org/10.1016/S1002-0721(07)60455-4

E. O. López, A. L. Rossi, B. S. Archanjo, R. O. Ospina, A. Mello, A. M. Rossi, Crystalline nano-coatings of fluorine-substituted hydroxyapatite produced by magnetron sputtering with high plasma confinement, Surface and Coatings Technology 264 (2015) 163-174. https://doi.org/10.1016/j.surfcoat.2014.12.055

M. Caligari Conti, G. Xerri, F. Peyrouzet, P. S. Wismayer, E. Sinagra, D. Mantovani, D. Vella, J. Buhagiar, Optimisation of fluorapatite coating synthesis applied to a biodegradable substrate, Surface Engineering 35 (2019) 255-265. https://doi.org/10.1080/02670844.2018.1491510

B. León, M. Albano, L. Garrido, E. Ferraz, A. Rosa, P. Tambasco de Oliveira, Processing, structural, and biological evaluations of zirconia scaffolds coated by fluorapatite, International Journal of Applied Ceramic Technology 15 (2018) 1415-1426. https://doi.org/10.1111/ijac.12904

A. M. Vilardell, N. Cinca, N. Garcia-Giralt, S. Dosta, I. G. Cano, X. Nogués, J.M. Guilemany, In-vitro comparison of hydroxyapatite coatings obtained by cold spray and conventional thermal spray technologies, Materials Science and Engineering: C 107 (2020) 110306 https://doi.org/10.1016/j.msec.2019.110306.

S. Ban, L. Cui, D. He, J. Jiang, X. Li, Z. Wang, L. Zhao, Q. Zhao, Z. Zhou, Preparation method for Making Hydroxyl Apatite Coating Through Cold Spraying, Involves Spraying Dried Hydroxyl Apatite Powders onto Matrix of Biomedical Implanted Metal Material Using Cold Spraying Device, CN101591777-B, 2011. https://patentimages.storage.googleapis.com/cc/8a/aa/bd755411df0fe3/CN101591777B.pdf in Chinese

R. Mongrain, O. F. Bertrand, S. Yue, O. Bertrand, Intermixed Particulate Material Used in Bioresorbable stent comprises cathodic Particles Made of Cathodic Material and Anodic Particles Made of Anodic Material Bound to Each Other, where the Materials Form a Galvanic Couple, WO2013163747-A1, 2013 https://patentimages.storage.googleapis.com/b3/10/dd/d63c1cc8515ff1/WO2013163747A1.pdf

P. A. Kramer, Manufacturing Medical Device e.g. Drug Eluting Stent, Guide Wires, Lead Tips, Catheters, Markers Involves Forming Porous Substrate from Biocompatible Material Using Spray Process and Processing Porous Substrate INTO Medical Device, US7514122-B2, 2009. US7514122-B2, 2009 https://portal.unifiedpatents.com/patents/patent/US-7514122-B2



31-01-2023 — Updated on 31-01-2023

How to Cite

Prashar, G., & Vasudev, H. (2023). Understanding cold spray technology for hydroxyapatite deposition: Review paper. Journal of Electrochemical Science and Engineering, 13(1), 41–62. https://doi.org/10.5599/jese.1424