Experimental and theoretical study on corrosion inhibition of mild steel by meso-tetraphenyl-porphyrin derivatives in acid solution

Original scientific paper


  • Messaoud Meraghni University of El Oued, Process Engineering Department, Faculty of Technology, B.P.789, 39000, El Oued, Algeria https://orcid.org/0000-0002-4632-4161
  • Touhami Lanez University of El Oued, Chemistry Department, VTRS Laboratory, B.P.789, 39000, El Oued https://orcid.org/0000-0002-3978-7635
  • Elhafnaoui Lanez VTRS Laboratory, Department of Chemistry, Faculty of Sciences, University of El Oued B.P.789, 39000, El Oued, Algeria https://orcid.org/0000-0002-6543-2547
  • Lazhar Bechki University of Ouargla, Chemistry Department, PO Box 511, 30000, Ouargla, Algeria https://orcid.org/0000-0002-2242-8310
  • Ali Kennoufa VTRS Laboratory, Department of Chemistry, Faculty of Sciences, University of El Oued B.P.789, 39000, El Oued, Algeria https://orcid.org/0000-0002-8460-6653




Low carbon steel, potentiodynamic polarization, quantum chemical method, potential of zero charge
Graphical Abstract


The inhibition effect of meso-tetraphenyl-porphyrin (TPPH2), meso-tetra4-methophenyl-porphyrin TPPH2(p-Me), and meso-tetra4-actophenyl-porphyrin (TAcPPH2) on the corrosion of XC52 mild steel in aerated 0.5 M aqueous sulfuric acid solution was studied by potentiodynamic polarization experiments and quantum chemical calculations. Results from potentiodynamic polarization showed that inhibition efficiency of three compounds increased upon increasing of the inhibitor concentration and they are acting as mixed type inhibitors, having dominant anodic reactions. Adsorption of all compounds follows the Langmuir adsorption isotherm with moderate values of free energy of adsorption. Quantum chemical calculation using DFT/B3LYP method confirmed a strong bond between meso-tetraphenyl-porphyrins and mild steel surface. The inhibition mechanism was also determined by the potential of zero charge (PZC) measurement at the metal/solution interface.


Download data is not yet available.


F. Javidan, A. Heidarpour, X.L. Zhao, J. Minkkinen, Thin-Walled Structures 102 (2016) 273-285. https://doi.org/10.1016/J.TWS.2016.02.002

G. Ghosh, P. Rostron, R. Garg, A. Panday, Engineering Fracture Mechanics 199 (2018) 609-618. https://doi.org/10.1016/J.ENGFRACMECH.2018.06.018

D. Dwivedi, K. Lepková, T. Becker, RSC Advances 7(8) (2017) 4580-4610. https://doi.org/10.1039/C6RA25094G

M. Finšgar, J. Jackson, Corrosion Science 86 (2014) 17-41. https://doi.org/10.1016/J.CORSCI.2014.04.044

W. Boukhedena, S. Deghboudj, Journal of Electrochemical Science and Engineering 11(4) (2021) 227-239. http://dx.doi.org/10.5599/jese.1050

F. E. Abeng, V. C. Anadebe, P. Y. Nkom, K. J. Uwakwe, E. G. Kamalu, Journal of Electrochemical Science and Engineering 11(1) (2021) 11-26. http://dx.doi.org/10.5599/jese.887

I. A. Kartsonakis, C. A. Charitidis, Applied Sciences 10 (2020) 6594. https://doi.org/10.3390/APP10186594

V. G. Sribharathy, S. Rajendran, Journal of Electrochemical Science and Engineering 2 (2012) 121-131. https://doi.org/10.5599/jese.2012.0014

C. Zuriaga-Monroy, R. Oviedo-Roa, L.E. Montiel-Sánchez, A. Vega-Paz, J. Marín-Cruz, J.M. Martínez-Magadán, Industrial and Engineering Chemistry Research 55 (2016) 3506-3516. https://doi.org/10.1021/ACS.IECR.5B03884

A. Boutarfaia, L. Bechki, T. Lanez, E. Lanez, M. Kadri, Current Bioactive Compounds 16 (2019) 1063-1071. https://doi.org/10.2174/1573407215666191017105239

T. Zaiz, T. Lanez, Journal of Fundamental and Applied Sciences 4 (2015) 182-191. https://doi.org/10.4314/JFAS.V4I2.8

T. Zaiz, T. Lanez, Journal of Chemical and Pharmaceutical Research 4 (2012) 2678-2680.

M. Frisch, G. Trucks, H. Schlegel, G.S.- Wallingford, U. CT, U. 2009, Gaussian 09; Gaussian Inc, Gaussian, (2016).

A. D. Becke, Physical Review A 38 (1988) 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098

A. D. Becke, The Journal of Chemical Physics 98 (1993) 5648-5652. https://doi.org/10.1063/1.464913

B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chemical Physics Letters 157 (1989) 200-206. https://doi.org/https://doi.org/10.1016/0009-2614(89)87234-3

P. M. W. Gill, B. G. Johnson, J. A. Pople, M. J. Frisch, Chemical Physics Letters 197 (1992) 499–505. https://doi.org/10.1016/0009-2614(92)85807-M

T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. V. R. Schleyer, Journal of Computational Chemistry 4 (1983) 294-301. https://doi.org/10.1002/JCC.540040303

R. Ditchfield, W. J. Hehre, J. A. Pople, The Journal of Chemical Physics 54 (1971) 724-728. https://doi.org/10.1063/1.1674902

W. J. Hehre, J. S. Binkley, J. A. Pople, W. J. Pietro, M.S . Gordon, Journal of the American Chemical Society 104 (1982) 2797-2803. https://doi.org/10.1021/JA00374A017

M. Birdeanu, C. Epuran, I. Fratilescu, E. Fagadar-Cosma, Processes 9 (2021) 1890. https://doi.org/10.3390/pr9111890

M. Behpour, S. M. Ghoreishi, N. Soltani, M. Salavati-Niasari, Corrosion Science 51 (2009) 1073-1082. https://doi.org/10.1016/J.CORSCI.2009.02.011

M. W. Khalil, Materials Science & Engineering Technology 23 (1992) 111-115. https://doi.org/10.1002/mawe.19920230311

J. Ge, O. B. Isgor, Materials and Corrosion 58 (2007) 573-582. https://doi.org/10.1002/maco.200604043

M. Christov, A. Popova, Corrosion Science 46 (2004) 1613-1620. https://doi.org/10.1016/J.CORSCI.2003.10.013

P. Li, J.Y. Lin, K.L. Tan, J.Y. Lee, Electrochimica Acta 42 (1997) 605-615. https://doi.org/10.1016/S0013-4686(96)00205-8

A. Popova, M. Christov, Journal of the University of Chemical Technology and Metallurgy 43(1) (2008) 37-47.

T. Benabbouha, M. Siniti, H. El Attari, K. Chefira, F. Chibi, R. Nmila, H. Rchid, Journal of Bio- and Tribo-Corrosion 4 (2018) 39. https://doi.org/10.1007/s40735-018-0161-0

L. I. Antropov, Zhurnal Fizicheskoi Khimii 37 (1963) 965-978.

I. A. Ammar, F. M. El Khorafi, Materials and Corrosion 24 (1973) 702-707. https://doi.org/10.1002/MACO.19730240806

E. E. Mola, Electrochimica Acta 26 (1981) 1209-1217. https://doi.org/10.1016/0013-4686(81)85101-8

D. Swain, A. Rana, P.K. Panda, S.V. Rao, Chemical Physics Letters 610 (2014) 310-315. https://doi.org/10.1016/j.cplett.2014.07.013

R. Giovannetti, L. Alibabaei, F. Pucciarelli, Inorganica Chimica Acta 363(7) (2010) 1561-1567. https://doi.org/10.1016/j.ica.2009.12.015

L. Larabi, Y. Harek, M. Traisnel, A. Mansri, Journal of Applied Electrochemistry 34 (2004) 833-839. https://doi.org/10.1023/B:JACH.0000035609.09564.E6

F. Mansfeld, Corrosion 37 (1981) 301-307. https://doi.org/10.5006/1.3621688

F. Mohsenifar, H. Jafari, K. Sayin, Journal of Bio- and Tribo-Corrosion 2 (2016) 1. https://doi.org/10.1007/s40735-015-0031-y

I. Fratilescu, A. Lascu, B.O. Taranu C. Epuran, M. Birdeanu, A. Macsim, E. Tanasa, E. Vasile, E. Fagadar-Cosma, Nanomaterials 12 (2022) 1930. https://doi.org/10.3390/nano12111930

A. Dehghani, G. Bahlakeh, B. Ramezanzadeh, M. Ramezanzadeh, Journal of the Taiwan Institute of Chemical Engineers 100 (2019) 239-261.

M. Uzzaman, M.K. Hasan, S. Mahmud, A. Yousuf, S. Islam, M.N. Uddin, A. Barua, Informatics in Medicine Unlocked 25 (2021) 100706. https://doi.org/10.1016/J.IMU.2021.100706

R. G. Parr, Z. Zhou, Accounts of Chemical Research 26 (2002) 256-258. https://doi.org/10.1021/AR00029A005

P.W. Ayers, R.G. Parr, R.G. Pearson, The Journal of Chemical Physics 124 (2006) 194107. https://doi.org/10.1063/1.2196882

N. M. O’Boyle, A. L. Tenderholt, K. M. Langner, Journal of Computational Chemistry 29 (2008) 839-845. https://doi.org/10.1002/JCC.20823



06-09-2022 — Updated on 06-09-2022

How to Cite

Meraghni, M., Lanez, T., Lanez, E., Bechki, L., & Kennoufa, A. . (2022). Experimental and theoretical study on corrosion inhibition of mild steel by meso-tetraphenyl-porphyrin derivatives in acid solution: Original scientific paper. Journal of Electrochemical Science and Engineering, 13(2), 217–229. https://doi.org/10.5599/jese.1400