A WSe2@poly(3,4-ethylenedioxythiophene) nanocomposite-based electrochemical sensor for simultaneous detection of dopamine and uric acid

Original scientific paper

Authors

  • Yasin Tangal Burdur Mehmet Akif Ersoy University, The Graduate School of Natural and Applied Sciences, Department of Chemistry, 15030, Burdur, Turkey https://orcid.org/0000-0003-4929-3767
  • Deniz Coban Burdur Mehmet Akif Ersoy University, The Graduate School of Natural and Applied Sciences, Department of Material Technology Engineering, 15030, Burdur, Turkey https://orcid.org/0000-0003-0798-798X
  • Sadik Cogal Burdur Mehmet Akif Ersoy University, Faculty of Arts and Science, Department of Chemistry, 15030, Burdur, Turkey https://orcid.org/0000-0001-8904-1332

DOI:

https://doi.org/10.5599/jese.1375

Keywords:

Tungsten diselenide, modified electrode, conducting polymer, selective sensing, biological compounds
Graphical Abstract

Abstract

In the present work, a nanocomposite of two-dimensional WSe2 nanosheets with poly-
(3,4‑ethylenedioxythiophene (WSe2@PEDOT) was prepared by facile hydrothermal method and characterized in terms of structural and morphological analyses. This nano­composite was used to modify glassy carbon electrode for the construction of an electrochemical sen­sing platform for simultaneous determination of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA). It was found that the incorporation of PEDOT into WSe2 nano­sheets exhibited enhanced electrochemical behaviors and electro¬catalytic activity against DA and UA. Using differential pulse voltammetry (DPV) measurements, the WSe2@PEDOT modified electrode displayed wide linear detection ranges of 16 to 466 µM for DA and 20 to 582.5 µM for UA. The electrode also exhibited high selectivity against DA and UA in the presence of major interference of ascorbic acid and other interferent substances.

Downloads

Download data is not yet available.

References

Z.-H. Sheng, X.-Q. Zheng, J.-Y. Xu, W.-J. Bao, F.-B. Wang, X.-H. Xia, Biosensors and Bioelectronics 34 (1) (2012) 125-131. https://doi.org/10.1016/j.bios.2012.01.030

R. M. Wightman, L. J. May, A. C. Michael, Analytical Chemistry 60(13) (1988) 769A-779A. https://doi.org/10.1021/ac00164a001

V.S.E. Dutt, H.A. Mottola, Analytical Chemistry 46(12) (1974) 1777-1781. https://doi.org/10.1021/ac60348a041

G. Di Chiara, V. Bassareo, S. Fenu, M. A. De Luca, L. Spina, C. Cadoni, E. Acquas, E. Carboni, V. Valentini, D. Lecca, Neuropharmacology 47(1) (2004) 227-241. https://doi.org/10.1016/j.neuropharm.2004.06.032

H. Beitollahi, S. Tajik, M. R. Aflatoonian, A. Makarem Journal of Electrochemical Science and Engineering 12 (2022) 199-208. https://doi.org/10.5599/jese.1231

P. Sankaranarayanan, S. V. Venkateswaran, Journal of Electrochemical Science and Engineering 10 (2020) 263-279. https://doi.org/10.5599/jese.783

S. Su, J. Chao, D. Pan, L. Wang, C. Fan, Electroanalysis 27(5) (2015) 1062-1072. https://doi.org/10.1002/elan.201400655

R. Sha, N. Vishnu, S. Badhulika, Sensors and Actuators B 279 (2019) 53-60. https://doi.org/10.1016/j.snb.2018.09.106

Y. Li, C. Fan, J. Zheng, Journal of Materials Science: Materials in Electronics 33(8) (2022) 5061-5072. https://doi.org/10.1007/s10854-022-07695-y

F. Jiang, W.-S. Zhao, J. Zhang, Microelectronic Engineering 225(C) (2020) 111279. https://doi.org/10.1016/j.mee.2020.111279

Y.-X. Chen, W.-J. Zhang, K.-J. Huang, M. Zheng, Y.-C. Mao, Analyst 142(24) (2017) 4843-4851. https://doi.org/10.1039/C7AN01244F

I. Kim, S. W. Park, D. W. Kim, Journal of Alloys and Compounds 827 (2020) 154348. https://doi.org/10.1016/j.jallcom.2020.154348-

Y. Li, H. Lin, H. Peng, R. Qi, C. Luo, Microchimica Acta 183(9) (2016) 2517-2523. https://doi.org/10.1007/s00604-016-1897-1

Y.-J. Huang, M.-S. Fan, C.-T. Li, C.-P. Lee, T.-Y. Chen, R. Vittal, K.-C. Ho. MoSe2, Electrochimica Acta 211 (2016) 794-803. https://doi.org/10.1016/j.electacta.2016.06.086

Y. Hui, C. Bian, S. Xia, J. Tong, J. Wang, Analytica Chimica Acta 1022 (2018) 1-19. https://doi.org/10.1016/j.aca.2018.02.080

M. Muska, J. Yang, Y. Sun, J. Wang, Y. Wang, Q. Yang. CoSe2, ACS Applied Nano Materials 4 (2021) 5796-5807. https://doi.org/10.1021/acsanm.1c00594

W. Gong, J. Li, Z. Chu, D. Yang, S. Subhan, J. Li, M. Huang, H. Zhang, Z. Zhao, Microchemical Journal 175 (2022) 107188. https://doi.org/10.1016/j.microc.2022.107188

J. Cheng, X. Wang, T. Nie, L. Yin, S. Wang, Y. Zhao, H. Wu, H. Mei, Analytical and Bio-analytical Chemistry 412 (2020) 2433-2441. https://doi.org/10.1007/s00216-020-02455-5

H. Sun, J. Chao, X. Zuo, S. Su, X. Liu, L. Yuwen, C. Fan, L. Wang, RSC Advances 4(52) (2014) 27625-27629. https://doi.org/10.1039/C4RA04046E

Published

25-07-2022

How to Cite

Tangal, Y., Coban, D., & Cogal, S. (2022). A WSe2@poly(3,4-ethylenedioxythiophene) nanocomposite-based electrochemical sensor for simultaneous detection of dopamine and uric acid: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(6), 1251–1259. https://doi.org/10.5599/jese.1375

Issue

Section

Electrochemical Science