High-velocity air fuel coatings for steel for erosion-resistant applications
Review paper
DOI:
https://doi.org/10.5599/jese.1369Keywords:
Thermal spraying, high velocity air fuel (HVAF), high velocity oxygen fuel (HVOF), slurry erosion, solid particle erosionAbstract
High-velocity air fuel (HVAF) coating processes have advantages over conventional high-velocity oxygen fuel (HVOF) processes, resulting in coatings with superior properties. The present review first provides a concise overview of HVAF coatings, highlighting their advantages over HVOF coatings. Then, the fundamentals of solid particle, slurry, and cavitation erosion are briefly introduced. Finally, the performance of HVAF coatings for erosion-resistant applications is discussed in detail. The emerging research consistently reports HVAF-coatings having higher erosion resistance than HVOF-coatings, which is attributed to their elevated hardness and density and improved microstructural features that inhibit the surface damages caused by erosion. The dominant wear mechanisms are mainly functions of particle impact angle. For instance, the removal of the binder phase at high impact angles causes the accumulation of plastic strain on hard particles (e.g., WC particles) in the matrix, forming micro-cracks between the hard particles and the matrix, eventually decreasing the erosion resistance of HVAF coatings. The binder phase of HVAF-coatings significantly affects erosion resistance, primarily due to their inherent mechanical properties and bearing capacity of hard particles. Optimizing spraying parameters to tailor the microstructural characteristics of these coatings appears to be the key to enhancing their erosion resistance. The relationship between microstructural features and erosion mechanisms needs to be clarified to process coatings with tailored microstructural features for erosion-resistant applications.
Downloads
References
P. S. Babu, Y. Madhavi, L. R. Krishna, G. Sivakumar, D. S. Rao, G. Padmanabham, Transactions of the Indian Institute of Metals 73 (2020) 2141-2159. https://doi.org/10.1007/s12666-020-02053-0
H.-R. Jiang, M.-L. Li, X.-S. Wei, T.-C. Ma, Y. Dong, C.-X. Ying, Z.-Y. Liao, J. Shen, Journal of Thermal Spray Technology 28 (2019) 1146-1159. https://doi.org/10.1007/s11666-019-00889-7
X. Gao, C. Li, Y. Xu, X. Chen, X. Han, Journal of Thermal Spray Technology 30 (2021) 1875-1890. https://doi.org/10.1007/s11666-021-01250-7
A. R. Govande, A. Chandak, B. R. Sunil, R. Dumpala, International Journal of Refractory Metals and Hard Materials 103 (2022) 105776. https://doi.org/10.1016/j.ijrmhm.2021.105772
A. K. Gujba, M. S. Mahdipoor, M. Medraj, Wear 484-485 (2021) 203904. https://doi.org/10.1016/j.wear.2021.203904
K. Torkashvand, S. Joshi, V. Testa, F. Ghisoni, S. Morelli, G. Bolelli, L. Lusvarghi, F. Marra, M. Gupta, Surface and Coatings Technology 436 (2022) 128296. https://doi.org/10.1016/j.surfcoat.2022.128296
H. L. Alwan, A. V. Makarov, N. N. Soboleva, Y. S. Korobov, V. I. Shumyakov, N. V. Lezhnin, V.A. Zavalishin, Russian Journal of Non-Ferrous Metals 62 (2022) 778-784. https://doi.org/10.3103/s1067821221060031
D. C. Ribu, R. Rajesh, D. Thirumalaikumarasamy, S. Vignesh, Materials Today: Proceedings 46 (2021) 7518-7530. https://doi.org/10.1016/j.matpr.2021.01.307
Y. Korobov, H. Alwan, N. Soboleva, A. Makarov, N. Lezhnin, V. Shumyakov, M. Antonov, M. Deviatiarov, Journal of Thermal Spray Technology 31 (2021) 234-246. https://doi.org/10.1007/s11666-021-01242-7
T. Varis, T. Suhonen, J. Laakso, M. Jokipii, P. Vuoristo, Journal of Thermal Spray Technology 29 (2020) 1365-1381. https://doi.org/10.1007/s11666-020-01037-2
E. Avcu, S. Fi̇dan, M.Ö. Bora, O. Çoban, İ. Taşkiran, T. Sinmazçeli̇k, Advances in Polymer Technology 32 (2013) E386-E398. https://doi.org/10.1002/adv.21286
S. Fidan, E. Avcu, E. Karakulak, R. Yamanoglu, M. Zeren, T. Sinmazcelik, Materials Science and Technology 29 (2013) 1088-1094. https://doi.org/10.1179/1743284713y.0000000239
E. Avcu, Y. Yıldıran Avcu, F. E. Baştan, M. A. U. Rehman, F. Üstel, A. R. Boccaccini, Progress in Organic Coatings 123 (2018) 362-373. https://doi.org/10.1016/j.porgcoat.2018.07.021
M. Armağan, A. A. Arici, Materials and Manufacturing Processes 32 (2016) 1715-1722. https://doi.org/10.1080/10426914.2016.1269919
D. Mills, Erosive Wear, in Pneumatic Conveying Design Guide, Elsevier, 2016, pp. 617-642. https://doi.org/10.1016/b978-0-08-100649-8.00027-5.
E. Avcu, S. Fidan, Y. Yıldıran, T. Sınmazçelik, Tribology - Materials, Surfaces & Interfaces 7 (2013) 201-210. https://doi.org/10.1179/1751584x13y.0000000043
V. Javaheri, D. Porter, V.-T. Kuokkala, Wear 408-409 (2018) 248-273. https://doi.org/10.1016/j.wear.2018.05.010
R. K. Kumar, M. Kamaraj, S. Seetharamu, T. Pramod, P. Sampathkumaran, Journal of Thermal Spray Technology 25 (2016) 1217-1230. https://doi.org/10.1007/s11666-016-0427-3
Y. Li, Y. Lian, J. Cao, L. Li, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 230 (2015) 634-643. https://doi.org/10.1177/1350650115608209
A. Kumar, A. Sharma, S. K. Goel, Materials Science and Engineering A 637 (2015) 56-62. https://doi.org/10.1016/j.msea.2015.04.031
M. S. Mahdipoor, F. Tarasi, C. Moreau, A. Dolatabadi, M. Medraj, Wear 330-331 (2015) 338-347. https://doi.org/10.1016/j.wear.2015.02.034
S. Matthews, B. James, M. Hyland, Surface and Coatings Technology 203 (2009) 1086-1093. https://doi.org/10.1016/j.surfcoat.2008.10.005
E. Sadeghi, S. Joshi, Surface and Coatings Technology 371 (2019) 20-35. https://doi.org/10.1016/j.surfcoat.2019.01.080
L. Baiamonte, S. Björklund, A. Mulone, U. Klement, S. Joshi, Surface and Coatings Technology 406 (2021) 126725. https://doi.org/10.1016/j.surfcoat.2020.126725
Y. Lian, Y. Li, Tribology Online 13 (2018) 36-42. https://doi.org/10.2474/trol.13.36
A. Hamilton, A. Sharma, U. Pandel, Surface Review and Letters 24 (2017) 18500117. https://doi.org/10.1142/s0218625x18500117
S. L. Liu, X. P. Zheng, G. Q. Geng, Wear 269 (2010) 362-367. https://doi.org/10.1016/j.wear.2010.04.019
Q. Wang, Z. Tang, L. Cha, Journal of Materials Engineering and Performance 24 (2015) 2435-2443. https://doi.org/10.1007/s11665-015-1496-z
J. Liu, L.P. Pan, J. C. Yu, Materials Science Forum 686 (2011) 618-622. https://doi.org/10.4028/www.scientific.net/MSF.686.618
Y. Wang, Z. Z. Xing, Q. Luo, A. Rahman, J. Jiao, S. J. Qu, Y. G. Zheng, J. Shen, Corrosion Science 98 (2015) 339-353. https://doi.org/10.1016/j.corsci.2015.05.044
R. K. Kumar, M. Kamaraj, S. Seetharamu, S. Anand Kumar, Materials & Design 132 (2017) 79-95. https://doi.org/10.1016/j.matdes.2017.06.046
V. Matikainen, S. R. Peregrine, N. Ojala, H. Koivuluoto, J. Schubert, S. Houdkova, P. Vuoristo, Tribologia - Finnish Journal of Tribology 36(1-2) (2019) 58-61. https://doi.org/10.30678/fjt.83590
V. Matikainen, S. Rubio Peregrina, N. Ojala, H. Koivuluoto, J. Schubert, Š. Houdková, P. Vuoristo, Surface and Coatings Technology 370 (2019) 196-212. https://doi.org/10.1016/j.surfcoat.2019.04.067
V. Matikainen, H. Koivuluoto, P. Vuoristo, J. Schubert, Š. Houdková, Journal of Thermal Spray Technology 27 (2018) 680-694. https://doi.org/10.1007/s11666-018-0717-z
L. L. Silveira, A. G. M. Pukasiewicz, D. J. M. de Aguiar, A. J. Zara, S. Björklund, Surface and Coatings Technology 374 (2019) 910-922. https://doi.org/10.1016/j.surfcoat.2019.06.076
V. Matikainen, H. Koivuluoto, P. Vuoristo, Wear 446-447 (2020) 203188. https://doi.org/10.1016/j.wear.2020.203188
H. L. Alwan, Y. S. Korobov, N. N. Soboleva, N. V. Lezhnin, A. V. Makarov, M. S. Deviatiarov, Solid State Phenomena 299 (2020) 893-901. https://doi.org/10.4028/www.scientific.net/SSP.299.893
Downloads
Published
How to Cite
Issue
Section
License
Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.