A sensitive and simple electrochemical technique for detecting ascorbic acid content in pharmaceutical and biological compounds

Original scientific paper

Authors

  • Farideh Mousazadeh School of Medicine, Bam University of Medical Sciences, Bam, Iran
  • Sayed Zia Mohammadi Department of Chemistry, Payame Nour University, Tehran, Iran https://orcid.org/0000-0001-6980-9121

DOI:

https://doi.org/10.5599/jese.1366

Keywords:

Glassy carbon electrode, graphene-CoS2 nanocomposite, electrochemical sensing, ; ascorbic acid
Graphical Abstract

Abstract

In the current study, a glassy carbon electrode (GCE) modified with graphene-CoS2 nanocomposite was investigated for electrochemical sensing of ascorbic acid. The electrochemical performance of the modified electrode was examined using differential pulse voltammetry (DPV), linear sweep voltammetry (LSV) and chronoamperometry (CHA) techniques. The electrochemical behavior of ascorbic acid at the graphene-CoS2/GCE displayed a higher oxidation current and lower oxidation potential than bare GCE. Under the optimal experimental conditions, the sensor presented a good linear response between the current and the ascorbic acid concentration range of 0.15–245.0 μM, with a low detection limit of 0.05 μM. Finally, the graphene-CoS2 nanocomposite-modified GCE was applied for the determination of ascorbic acid in real samples and displayed excellent recoveries.

Downloads

Download data is not yet available.

References

N. Smirnoff, G. L. Wheeler, Critical Reviews in Plant Sciences 19 (2000) 267-290. https://doi.org/10.1080/07352680091139231

S. Chambial, S. Dwivedi, K. K. Shukla, P. J. John, P. Sharma, Indian Journal of Clinical Biochemistry 28 (2013) 314-328. https://doi.org/10.1007/s12291-013-0375-3

A. C. Carr, B. Frei, The American Journal of Clinical Nutrition 69 (1999) 1086-1107. https://doi.org/10.1093/ajcn/69.6.1086

J. Mandl, A. Szarka, G. Banhegyi, British Journal of Pharmacology 157 (2009) 1097-1110. https://doi.org/10.1111/j.1476-5381.2009.00282.x

J. Du, J. J. Cullen, G. R. Buettner, Biochimica et Biophysica Acta - Reviews on Cancer 1826 (2012) 443-457. https://doi.org/10.1016/j.bbcan.2012.06.003

S. J. Padayatty, M. Levine, Oral Diseases 22 (2016) 463-493. https://doi.org/10.1111/odi.12446

S. J. Duthie, A. Ma, M. A. Ross, A. R. Collins, Cancer Research 56 (1996) 1291-1295.

R. A. Jacob, Nutrition Research 15 (1995) 755-766. https://doi.org/10.1016/0271-5317(95)00041-G

G. Grosso, R. Bei, A. Mistretta, S. Marventano, G. Calabrese, L. Masuelli, D. Gazzolo, Frontiers in Bioscience 18 (2013) 1017-1029. https://doi.org/10.2741/4160

F. R. Mansour, W. Wei, N. D. Danielson, Biomedical Chromatography 27 (2013) 1339-1353. https://doi.org/10.1002/bmc.2995

H. Hemilä, Nutrients 9 (2017) 339. https://doi.org/10.3390/nu9040339

B. M. C. Costa, A. A. Pradoa, T.C . Oliveira, L. P. Bressan, R. A. A. Munoz, A. D. Batista, J. A. F. da Silva, E. M. Richter, Talanta 204 (2019) 353-358. https://doi.org/10.1016/j.talanta.2019.06.017

Z. Chen-Yu, F. Qi, Z. Yu, D. Yan, Chinese Journal of Analytical Chemistry 49 (2021) 982-991.

Y. Ding, M. G. Zhao, J. T. Yu, Z. M. Li, X. M. Zhang, Y. Ma, H. Li, S. G. Chen, Talanta 219 (2020) 121299. https://doi.org/10.1016/j.talanta.2020.121299

H. Li, Y. Zhou, J. Du, Journal of Photochemistry and Photobiology A 429 (2022) 113945. https://doi.org/10.1016/j.jphotochem.2022.113945

Y. Matsuoka, M. Yamato, K. I. Yamada, Journal of Clinical Biochemistry and Nutrition 58(1) (2016) 16-22. https://doi.org/10.3164/jcbn.15-105

H. Iwase, Talanta 60 (2003) 1011-1021. https://doi.org/10.1016/S0039-9140(03)00180-2

A. Mazurek, J. Jamroz, Food Chemistry 173 (2015) 543-550. https://doi.org/10.1016/j.foodchem.2014.10.065

H. Beitollahi, S. Tajik, M. H. Asadi, P. Biparva, Journal of Analytical Science and Technology 5 (2014) 25. https://doi.org/10.1186/s40543-014-0029-y

Q. Wang, X. Xiao, X. Hu, L. Huang, T. Lia, M. Yang, Materials Letters 285 (2021) 129158. https://doi.org/10.1016/j.matlet.2020.129158

H. Karimi-Maleh, F. Karimi, Y. Orooji, G. Mansouri, A. Razmjou, A. Aygun, F. Sen, Scientific Reports 10 (2020) 11699. https://doi.org/10.1038/s41598-020-68663-2

S. Li, J. Fan, S. Li, Y. Ma, J. Wu, H. Jin, Z. Chao, D. Pan, Z. Guo, Journal of Nanostructure in Chemistry 11 (2021) 735-749. https://doi.org/10.1007/s40097-021-00441-6

T. Eren, N. Atar, M. L. Yola, H. Karimi-Maleh, Food Chemistry 185 (2015) 430-436. https://doi.org/10.1016/j.foodchem.2015.03.153

H. Karimi-Maleh, R. Darabi, M. Shabani-Nooshabadi, M. Baghayeri, F. Karimi, J. Rouhi, C. Karaman, Food and Chemical Toxicology 162 (2022) 112907. https://doi.org/10.1016/j.fct.2022.112907

K. Qu, W. Wang, C. Shi, Z. Sun, H. Qi, J. Shi, S. Yang, Z. Huang, Z. Guo, Journal of Nano-structure in Chemistry 11 (2021) 769-784. https://doi.org/10.1007/s40097-021-00448-z

S. Tajik, Z. Dourandish, F. Garkani-Nejad, A. Aghaei Afshar, H. Beitollahi, Micromachines 13 (2022) 369. https://doi.org/10.3390/mi13030369

H. Beitollahi, J. Electrochem. Sci. Eng. 12(1) (2022) 1-2. https://doi.org/10.5599/jese.1302

T. Shigemitsu, G. Matsumoto, S. Tsukahara, Medical and Biological Engineering and Computing 17 (1979) 465-470. https://doi.org/10.1007/BF02447059

H. Karimi-Maleh, A. Khataee, F. Karimi, M. Baghayeri, L. Fu, J. Rouhi, R. Boukherroub, Chemosphere 291 (2022) 132928. https://doi.org/10.1016/j.chemosphere.2021.132928

J. B. Raoof , R. Ojani, H. Beitollahi, International Journal of Electrochemical Sciences 2 (2007) 534 – 548. http://www.electrochemsci.org/papers/vol2/2070534.pdf

J. D. Lović, Journal of Electrochemical Science and Engineering 12 (2022) 275-282. https://doi.org/10.5599/jese.1166

J. Mohanraj, D. Durgalakshmi, R. A. Rakkesh, S. Balakumar, S. Rajendran, H. Karimi-Maleh, Journal of Colloid and Interface Science 566 (2020) 463-472. https://doi.org/10.1016/j.jcis.2020.01.089

S. Kianfar, A. N. Golikand, B. Zare Nezhad, Journal of Nanostructure in Chemistry 11 (2021) 287–299. https://doi.org/10.1007/s40097-020-00366-6

H. Mahmoudi-Moghaddam, S. Tajik, H. Beitollahi, Microchemical Journal 150 (2019) 104085. https://doi.org/10.1016/j.microc.2019.104085

M. Miraki, H. Karimi-Maleh, M. A. Taher, S. Cheraghi, F. Karimi, S. Agarwal, V. K. Gupta, Journal of Molecular Liquids 278 (2019) 672-676. https://doi.org/10.1016/j.molliq.2019.01.081

P. Shen, B. Zhang,Y. Wang, X. Liu, C. Yu, T. Xu, S. S. Mofarah, Y.Yu, Y. Liu, H. Sun, H. Arandiyan, Journal of Nanostructure in Chemistry 11 (2021) 33-68 https://doi.org/10.1007/s40097-020-00367-5

B. Kamble, K. M. Garadkar, K. K. Sharma, P. Kamble, S. Tayade, B. D. Ajalkar, Journal of Electrochemical Science and Engineering 11(3) (2021) 143-159. https://doi.org/10.5599/jese.956

M. Zare, H. Sarhadi, Journal of Electrochemical Science and Engineering 11(1) (2021) 1-9. https://doi.org/10.5599/jese.878

H. Beitollahi, M. A. Khalilzadeh, S. Tajik, M. Safaei, K. Zhang, H. Won Jang, M. Shokouhimehr, ACS Omega 5 (2020) 2049-2059. https://doi.org/10.1021/acsomega.9b03788

H. Karimi-Maleh, C. Karaman, O. Karaman, F. Karimi, Y. Vasseghian, L. Fu, A. Mirabi, Journal of Nanostructure in Chemistry 12 (2022) 429-439. https://doi.org/10.1007/s40097-022-00492-3

S. S. Mohammadi, N. Ghasemi, M. Ramezani, Eurasian Chemical Communications 2 (2020) 87-102. http://dx.doi.org/10.33945/SAMI/ECC.2020.1.10

S. Tajik, H. Beitollahi, M. Torkzadeh-Mahani, Journal of Nanostructure in Chemistry 12 (2022) 581-588. https://doi.org/10.1007/s40097-022-00496-z

H. Karimi-Maleh, M. Sheikhshoaie, I. Sheikhshoaie, M. Ranjbar, J. Alizadeh, N. W. Maxakato, A. Abbaspourrad, New Journal of Chemistry 43 (2019) 2362-2367. https://doi.org/10.1039/C8NJ05581E

V. Karthika, P. Kaleeswarran, K. Gopinath, A. Arumugam, M. Govindarajan, N. S. Alharbi, G. Benelli, Materials Science and Engineering: C 90 (2018) 589-601. https://doi.org/10.1016/j.msec.2018.04.094

S. Tajik, H. Beitollahi, S. Shahsavari, F. Garkani-Nejad, Chemosphere 291 (2022) 132736. https://doi.org/10.1016/j.chemosphere.2021.132736

S. A. Alavi-Tabari, M. A. Khalilzadeh, H. Karimi-Maleh, Journal of Electroanalytical Chemistry 811 (2018) 84-88. https://doi.org/10.1016/j.jelechem.2018.01.034

H. Karimi-Maleh, A. F. Shojaei, K. Tabatabaeian, F. Karimi, S. Shakeri, R. Moradi, Biosensors and Bioelectronics 86 (2016) 879-884. https://doi.org/10.1016/j.bios.2016.07.086

S. A. Arote, A. S. Pathan, Y. V. Hase, P. P. Bardapurkar, D. L. Gapale, B. M. Palve, Ultrasonics Sonochemistry 55 (2019) 313-321. https://doi.org/10.1016/j.ultsonch.2019.01.012

M. Payehghadr, Y. Taherkhani, A. Maleki, F. Nourifard, Eurasian Chemical Communications 2 (2020) 982-990. https://doi.org/10.22034/ECC.2020.114589

H.Beitollahi, H. Mahmoudi Moghaddam, S. Tajik, Analytical Letters 52 (2019) 1432-1444. https://doi.org/10.1080/00032719.2018.1545132

S. Tajik, M. B. Askari, S. A. Ahmadi, F. Garkani-Nejad, Z. Dourandish, R. Razavi, A. Di Bartolomeo, Nanomaterials 12 (2022) 491. https://doi.org/10.3390/nano12030491

M. Mehdi Foroughi, H.Beitollahi, S. Tajik, A. Akbari, R.Hosseinzadeh, International Journal of Electrochemical Sciences 9 (2014) 8407 - 8421 http://www.electrochemsci.org/papers/vol9/91208407.pdf

G. Tiris, Y. Khoshnavaz, E. N. Öven, M. Mehmandoust, N. Erk, J. Electrochem. Sci. Eng. 12(1) (2022) 175-183. https://doi.org/10.5599/jese.1153

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306 (2004) 666–669. https://doi.org/10.1126/science.1102896

G. Amala, S. M. Gowtham, RSC Advances 7 (2017) 36949-36976. https://doi.org/10.1039/C7RA02845H

S. Tajik, A. A. Afshar, S. Shamsaddini, M. B. Askari, Z. Dourandish, F. Garkani-Nejad, H. Beitollahi, A. Di Bartolomeo, Industrial Engineering Chemistry Research (2022). https://doi.org/10.1021/acs.iecr.2c00370

H. Karimi-Maleh, H. Beitollahi, P. S. Kumar, S. Tajik, P. Mohammadzadeh Jahani, F. Karimi, C. Karaman, Y. Vasseghian, M. Baghayeri, J. Rouhi, P. L. Show, S. Rajendran, L. Fu, N. Zare, Food and Chemical Toxicology, 164 (2022) 112961. https://doi.org/10.1016/j.fct.2022.112961.

S. Wu, Y. Zhang, L. Liu, W. Fan, Materials Letters 276 (2020) 128253. https://doi.org/10.1016/j.matlet.2020.128253

P. A. Pushpanjali, J. G. Manjunatha, N. Hareesha, J. Electrochem. Sci. Eng. 11(3) (2021) 161-177. https://doi.org/10.5599/jese.999

P. M. Jahani, J. Electrochem. Sci. Eng. 12(1) (2022) 81-90. https://doi.org/10.5599/jese.1133.

P. T. K. Loan, W. Zhang, C. T. Lin, K. H. Wei, L. J. Li, C. H. Chen, Advanced Materials 26 (2014) 4838-4844. https://doi.org/10.1002/adma.201401084

L. Shen, L. Yu, H. B. Wu, X. Y. Yu, X. Zhang, X. W. D. Lou, Nature Communications 6 (2015) 1-8. https://doi.org/10.1038/ncomms7694

W. He, C. Wang, H. Li, X. Deng, X. Xu, T. Zhai, Advanced Energy Materials 7 (2017) 1700983. https://doi.org/10.1002/aenm.201700983

Y. Zhao, Z. Shi, H. Li, C. A. Wang, Journal of Materials Chemistry A 6 (2018) 12782-12793. https://doi.org/10.1039/C8TA02438C

Downloads

Published

10-08-2022

How to Cite

Mousazadeh, F. ., & Mohammadi, S. Z. (2022). A sensitive and simple electrochemical technique for detecting ascorbic acid content in pharmaceutical and biological compounds: Original scientific paper. Journal of Electrochemical Science and Engineering, 12(6), 1133–1142. https://doi.org/10.5599/jese.1366

Issue

Section

Electroanalytical chemistry

Most read articles by the same author(s)