Determination of ascorbic acid at solid electrodes modified with L-cysteine
Original scientific paper
DOI:
https://doi.org/10.5599/jese.1365Keywords:
Modified electrodes, electropolymerization, poly(L-cysteine), voltametric sensor, vitamin C
Abstract
Gold and glassy carbon electrode surfaces were modified with L-cysteine, and the electrochemical behavior of ascorbic acid (AA) was investigated on these new surfaces. To improve the efficiency of electrodes, the electrode surfaces were modified and optimum conditions for AA determination were established. Electrochemical experiments were performed at different potential ranges, the concentration of AA, scan rates, number of polymerization cycles and pH values. Using cyclic voltammetry (CV) technique, optimum conditions were determined as the potential scanning range of 0.2 to 1.5 V vs. Ag/AgCl in 0.1 M phosphate buffer solution (pH 7.02) for the L-cysteine/Au electrode, and -1.95 to 1.9 V vs. Ag/AgCl in 0.1 M phosphate buffer solution (pH 2.7) for the L-cysteine/GC electrode. For the characterization of both modified electrode surfaces, a series of physicochemical techniques was also applied. The usability and selectivity of these two proposed modified electrodes for the determination of AA were investigated using square wave voltammetry (SWV) in the presence of possible interferents, i.e., glycine, L-glutamic acid and uric acid.
Downloads
References
E. K. Janghel, S. Sar, Y. Pervez, A new method for determination of ascorbic acid in fruit juices, pharmaceuticals and biological samples, Journal of Scientific and Industrial Research 71 (2012) 549-555. http://nopr.niscair.res.in/bitstream/123456789/14525/1/JSIR%2071%288%29%20549-555.pdf
C. K. Pires, A. F. Lavorante , L. M. T. Marconi, S. R. P. Meneses, E. A. G. Zagatto, A multi-pumping flow system for chemiluminometric determination of ascorbic acid in powdered materials for preparation of fruit juices, Microchemical Journal 83(2) (2006) 70-74. https://doi.org/10.1016/j.microc.2006.02.001
X. Zheng, D. Zhou, D. Xiang, W. Huang, S. Lu, Electrochemical determination of ascorbic acid using the poly-cysteine film-modified electrode, Russian Journal of Electrochemistry 45(10) (2009) 1183-1187. https://doi.org/10.1134/S1023193509100115
R. Barsbuğa, Determination of uric acid using aluminium oxide nanoparticles modified carbon paste electrode in the presence of ascorbic acid. MSc Thesis, Namık Kemal University, Tekirdağ, Turkey, 2016. http://acikerisim.nku.edu.tr:8080/xmlui/bitstream/handle/20.500.11776/1096/0050095.pdf?sequence=1&isAllowed=y
D. Ivanović, A. Popović, D. Radulović, M. Medenica, Reversed-phase ion-pair HPLC determination of some water-soluble vitamins in pharmaceuticals, Journal of Pharmaceutical and Biomedical Analysis 18(6) (1999) 999-1004. https://doi.org/10.1016/S0731-7085(98)00109-5
G. S. Sastry, G. G. Rao, Oxidimetric determination of ascorbic acid with potassium hexacyanoferrate(III) in acid medium, Talanta 19(2) (1972) 212-214. https://doi.org/10.1016/0039-9140(72)80194-2
C. Bravo-Díaz, E. González-Romero, A novel method for the determination of vitamin C in natural orange juices by electrochemical monitoring of dediazoniation of 3-methylbenzenediazonium tetrafluoroborate, Analytica Chimica Acta 385(1-3) (1999) 373-384. https://doi.org/10.1016/S0003-2670(98)00727-2
N. Matei, S. Birghila, V. Popescu, S. Dobrinas, A. Soceanu, C. Oprea, V. Magearu, Kinetic study of vitamin C degradation from pharmaceutical products, Romanian Journal of Physics 53(1-2) (2008) 343-351. https://rjp.nipne.ro/2008_53_1-2/0343_0352.pdf
S. M. Sultan, Y. A. Hassan, K. E. Ibrahim, Sequential injection technique for automated titration: Spectrophotometric assay of vitamin C in pharmaceutical products using cerium (IV) in sulfuric acid, Analyst 124 (1999) 917-921. https://doi.org/10.1039/A902000D
M. A. Abdalla, H. M. Al-Swaidan, Iodimetric determination of iodate, bromate, hypochlorite, ascorbic acid and thiourea using flow injection amperometry, Analyst 114 (1989) 583-586. https://doi.org/10.1039/AN9891400583
Y. Dilgin, G. Nişli, Fluorimetric determination of ascorbic acid in vitamin C tablets using Methylene Blue, Chemical and Pharmaceutical Bulletin 53(10) (2005) 1251-1254. https://doi.org/10.1248/cpb.53.1251
M. A. Memon, M. H. Memon, M.U . Dahot, I. A. Ansari, Spectrophotometric determination of ascorbic acid in pharmaceuticals by flow injection analysis using brown mono 1,10-phenaathroline-iron (III) complex as an oxidant, Medical Journal of Islamic Academy of Sciences 13(2) (2000) 69-74. https://medicaljournal-ias.org/jvi.aspx/jvi.aspx? pdir=ias&plng=eng&un=IAS-74936
S. P. Kounaves, Voltammetric techniques handbook of instrumental techniques for analytical chemistry, Tufts University, Department of Chemistry, Ch. 37, USA, 1997, p. 709. https:// www.brown.edu/Departments/Engineering/Courses/En123/Lectures/potentiostat.pdf
A. Sivanesan, P. Kannan, S. A. John, Electrocatalytic oxidation of ascorbic acid using a single layer of gold nanoparticles immobilized on 1,6-hexanedithiol modified gold electrode, Electrochimica Acta 52(28) (2007) 8118-8124. https://doi.org/10.1016/j.electacta.2007.07.020
P. Shakkthivel, S.-M. Chen, Simultaneous determination of ascorbic acid and dopamine in the presence of uric acid on ruthenium oxide modified electrode, Biosensors and Bioelectronics 22(8) (2007) 1680-1687. https://doi.org/10.1016/j.bios.2006.07.026
X. Zou, L. Luo, Y. Ding, Q. Wu, Chitosan incorporating cetyltrimethylammonium bromide modified glassy carbon electrode for simultaneous determination of ascorbic acid and dopamine, Electroanalysis 19(17) (2007) 1840-1844. https://doi.org/10.1002/elan.200703945
Y. Gao, H. Li, J. Tong, L. Wang, A new voltammetric sensor based on poly(Lcysteine)/GR composite film modified electrode for the sensitive determination of amaranth in wastewater, Environmental Technology 42(15) (2021) 2385-2390. https://doi.org/10.1080/09593330.2019.1701569
Ş. Z. B. Yağcı, Investigation of the voltammetric behaviors of some drug compounds at poly (p-aminobenzene sulfonic acid) electrode and quantitative determination in drug samples. MSc Thesis, İnönü University, Malatya, Turkey, 2011, 1-74. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=9dNAnzJlZyaHePjHTlfXEQ&no=JGj5SVaW8Nk4Kl3CkcnF9A
T. Göver, Z. Yazıcıgil, Electrochemical study of 6-(ferrocenyl)hexanethiol on gold electrode surface in non-aqueous media, Surfaces and Interfaces 13 (2018) 163-167. https://doi.org/10.1016/j.surfin.2018.09.002
T. Tabanlıgil Calam, E. Hasdemir, Comparative characterizations of self-assembled monolayers of 1, 6-hexanedithiol and 1-hexanethiol formed on polycrystalline gold electrode, Comptes rendus de l’Acad´emie bulgare des Sciences 72(3) (2019) 316-326. https://www.researchgate.net/publication/332211482
F. Tatli, D. Uzun, T. Tabanlıgil Calam, A. B. Gündüzalp, E. Hasdemir, Preparation and characterization of 3‐[(1H‐1, 2, 4‐triazole‐3‐ylimino) methyl] naphtalene‐2‐ol film at the platinum surface for selective voltammetric determination of dopamine in the presence of uric acid and ascorbic acid, Surface and Interface Analysis 51(4) (2019) 475-483. https://doi.org/10.1002/sia.6607
T. Tabanlıgil Calam, The voltammetric determination of epinephrine on an Au electrode modified with electropolymerized 3,5-diamino-1,2,4-triazole film, Gazi University Journal of Science C 7(4) (2019) 985-998. https://doi.org/10.29109/gujsc.623660
Y. Öztekin, Z. Yazıcıgil, Preparation and characterization of a 1,10-phenanthroline-modified glassy carbon electrode, Electrochimica Acta 54(28) (2009) 7294-7298. https://doi.org/10.1016/j.electacta.2009.07.050
M. D. Rosso, C. H. Brodie, S. Ramalingam, D. M. Cabral, E. Pensini, A. Singh, C. M. Collier, Characterisation of graphene electrodes for microsystems and microfluidic devices, Scientific Reports 9 (2019) 5773. https://doi.org/10.1038/s41598-019-42108-x
H. Liu, G. Wang, D. Chen, W. Zhang, C. Li, B. Fang, Fabrication of polythionine/NPAu/MWNTs modified electrode for simultaneous determination of adenine and guanine in DNA, Sensors and Actuators B 128(2) (2008) 414-421. https://doi.org/10.1016/j.snb.2007.06.028
Ş. Erogul, Preparation of electrochemical sensor based on Fe3O4 nanoparticle-graphene oxide for determination of catechol and hydroquinone. MSc Thesis, Selçuk University, Konya, Turkey, 2015, 1-78. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=G7LI0Hy0IJhopWy3iCfbGQ&no=xl1IxQ0Dt_z5uoG4jBjpIw
P. Carro, G. Andreas, C. Vericat, M. E. Vela, R. C. Salvarezza, New aspects of the surface chemistry of sulfur on Au(111): Surface structures formed by gold-sulfur complexes, Applied Surface Science 487 (2019) 848-856. https://doi.org/10.1016/j.apsusc.2019.05.167
F. Ağın, Voltammetric determination of guaifenesin on poly(Nile Blue) modified glassy carbon electrode in pharmaceutical dosage form, Karadeniz Chemical Science and Technology 2 (2018) 27-31. https://dergipark.org.tr/tr/download/article-file/498653
D. He, P. Zhang, S. Li, H. Luo, A novel free-standing CVD graphene platform electrode modified with AuPt hybrid nanoparticles and L-cysteine for the selective determination of epinephrine, Journal of Electroanalytical Chemistry 823 (2018) 678-687. https://doi.org/10.1016/j.jelechem.2018.07.022
Downloads
Published
How to Cite
Issue
Section
License

Articles are published under the terms and conditions of the
Creative Commons Attribution license 4.0 International.
Funding data
-
Selçuk University Research Foundation
Grant numbers 18201046