Non-toxic leguminous plant leaf extract as an effective corrosion inhibitor of UNS S30403 in 1 M HCl

Original scientific paper

Authors

  • Okiemute Dickson Ofuyekpone Department of Metallurgical Engineering, Delta State Polytechnic, Ogwashi-Uku, Delta State, Nigeria https://orcid.org/0000-0002-0657-6372
  • Adesoji Adeolu Adediran Department of Mechanical Engineering, Landmark University, Omu-Aran, Kwara State, Nigeria and Department of Mechanical Engineering Science, University of Johannesburg, South Africa https://orcid.org/0000-0001-9457-1071
  • Ochuko Goodluck Utu Department of Welding and Fabrication, Delta State Polytechnic, Ogwashi-Uku, Delta State, Nigeria. https://orcid.org/0000-0003-2656-3592
  • Basil O. Onyekpe Department of Mechanical Engineering, University of Benin, Benin City, Edo State, Nigeria
  • Ufuoma G Unueroh Department of Mechanical Engineering, University of Benin, Benin City, Edo State, Nigeria. https://orcid.org/0000-0002-1878-9703

DOI:

https://doi.org/10.5599/jese.1343

Keywords:

Stainless steel 304L, green inhibitor, inhibition efficiency, protective film
Graphical Abstract

Abstract

Weight loss, polarization, and open circuit potential methods were used to investigate the corrosion inhibitory impact of Centrosema pubescens leaf extract on 304L austenitic stainless steel UNS S30403 in 1 M hydrochloric acid. This non-toxic extract behaves as a mixed-type inhibitor according to the polarization curves, thermodynamics and activation parameters. Both the weight loss calculations and potentiodynamic polarization investigations showed that 1.2 g L-1 was the optimal concentration of the leaf extract. While the weight loss method gave inhibition efficiency of 86.84 and 75.00 % after 10 and 60 days of immersion at the optimum concentration, polarization studies revealed inhibition efficiencies of 93.08 and 98.66 % at 303 and 333 K, respectively. The extract molecules adhered to the UNS S30403 surface according to Langmuir adsorption isotherm. The presence of the protective film on the UNS S30403 surface was confirmed by SEM, EDX, and XRD measurements. The inhibition performance of the leaf extract was noted to be a function of the extract concentration, immersion time and temperature. The FTIR analysis indicated an interaction between austenitic stainless steel UNS S30403 and the molecules of Centrosema pubescens leaf extract.

Downloads

Download data is not yet available.

References

M. Behpour, S. M. Ghoreishi, N. Soltani, M. Salavati-Niasari, Corrosion Science 51(5) (2009) 1073-1082. https://doi.org/10.1016/j.corsci.2009.02.011

M. Behpour, S. M. Ghoreishi, M. Khayat Kashani, N. Soltani, Materials and Corrosion 60 (2009) 895-898. https://doi.org/10.1002/maco.200905182

A. S. Fouda, A. S. Ellithy, Corrosion Science 51 (2009) 868-875. https://doi.org/10.1016/j.corsci.2009.01.011

H. Heydari, M. Talebian, Z. Salarvand, K. Raeissi, M. Bagheri, M. A. Golozar, Journal of Molecular Liquids 254 (2018) 177-187. https://doi.org/10.1016/j.molliq.2018.01.112

R. Solmaz, Corrosion Science 79 (2014) 169-176. http://dx.doi.org/10.1016/j.corsci.2013.11.001

M. Scendo, Corrosion Science 49(7) (2007) 2985-3000. http://dx.doi.org/10.1016/j.corsci.2007.01.002

N. Odewunmi, S. Umoren, Z. Gasem, Journal of Environmental Chemical Engineering 3(1) (2015) 286-296. https://doi.org/10.1016/j.jece.2014.10.014

N. I. Kairi, J. Kassim, International Journal of Electrochemical Science 8 (2013) 7138-7155. http://www.electrochemsci.org/papers/vol8/80507138.pdf

M. Mehdipour, B. Ramezanzadeh, S. Arman, Journal of Industrial and Engineering Chemistry 21 (2015) 318-327. https://doi.org/10.1016/J.JIEC.2014.02.041

G. M. Al-Senani, International Journal of Electrochemical Science 11 (2016) 291-302. http://www.electrochemsci.org/papers/vol11/110100291.pdf

I. Hermoso-Diaz, J. Gonzalez-Rodriguez, J. Uruchurtu-Chavarin, International Journal of Electrochemical Science 11 (2016) 4253-4266. http://www.electrochemsci.org/abstracts/vol11/110604253.pdf

E. Alibakhshi, M. Ramezanzadeh, G. Bahlakeh, B. Ramezanzadeh, M. Mahdavian, M. Motamedi, Journal of Molecular Liquids 255 (2018) 185-198. https://doi.org/10.1016/j.molliq.2018.01.144

O. D. Ofuyekpone, O. G. Utu, B. O. Onyekpe, A. A. Adediran, M. Oki, Case Studies in Chemical and Environmental Engineering 2 (2020) 100058. https://doi.org/10.1016/j.cscee.2020.100058

O. D. Ofuyekpone, O. G. Utu, B. O. Onyekpe, A. A. Adediran, Scientific African 11 (2021) e00714. https://doi.org/10.1016/j.sciaf.2021.e00714

O. D. Ofuyekpone, O. G. Utu, B. O. Onyekpe, A. A. Adediran, M. Oki, Chemical Data Collections 35 (2021) 100763. https://doi.org/10.1016/j.cdc.2021.100763

O. D. Ofuyekpone , O. G. Utu , B. O. Onyekpe, Applied Surface Science Advances 3 (2021) 100061. https://doi.org/10.1016/j.apsadv.2021.100061

O. Sanni, A. P. I. Popoola, O. S. I. Fayomi, Energy Procedia 157 (2019) 619-625. https://doi.org/10.1016/j.egypro.2018.11.227

R. T. Loto, C. A. Loto, A. P. I. Popoola, International Journal of Electrochemical Science 7 (2012) 7016-7032. file:///C:/Users/USER/Downloads/Effect_of_Aminobenzene_Concentrations_on_the_Corro%20(1).pdf

A. K. Satpati, P. V. Ravindran, Materials Chemistry and Physics 109 (2008) 352-359. https://doi.org/10.1016/j.matchemphys.2007.12.002

M. Lebrini, F. Robert, H. Vezin, C. Roos, Corrosion Science 52 (2010) 3367-3376. https://doi.org/10.1016/j.corsci.2010.06.009

S. Sair, A. Oushabi, K. Nehhale, O. T. Y. Abboud, A. El Bouari, International Journal of Electrochemical Science 13 (2018) 10642-10653. https://doi.org/10.20964/2018.11.38 .

N. Soltani, N. Tavakkoli, M. Khayatkashani, M. R. Jalali, A. Mosavizade, Corrosion Science 62 (1) (2012) 122-135. https://doi.org/10.1016/j.corsci.2012.05.003

K. P. Kumar, M. S. Pillai, G. R. Thusnavis, Journal of Materials and Environmental Science 1(2) (2010) 119-128. https://www.jmaterenvironsci.com/Document/vol1/15-JMES-27-2010-Veno.pdf

O. E. Malomo, S. A. Yaro, D. S. Yawas, A. S. Akande, Annals of Faculty Engineering Hunedoara International Journal of Engineering (2016). https://annals.fih.upt.ro/pdf-full/2016/ANNALS-2016-3-05.pdf

V. Sribharathy, S. Rajendran, ISRN Corrosion 2013 (2013) 370802. http://dx.doi.org/10.1155/2013/370802

M. Bouklah, B. Hammouti, Portugaliae Electrochimica Acta 24 (2006) 457-468. http://www.peacta.org/articles_upload/PEA_4_2006_457_468.pdf

T. K. Chaitra, K. N. Mohana, H. C. Tandon, International Journal of Corrosion 2016 (2016) 9532809. https://doi.org/10.1155/2016/9532809

G. Vengatesh, M. Sundaravadivelu, Journal of Molecular Liquids 287 (2019) 110906. https://doi.org/10.1016/j.molliq.2019.110906

V. S. Sastri, E. Ghali, M. Elboujdaini, Corrosion Prevention and Protection: Practical Solutions, John Wiley & Sons Ltd, England, 2007.

U.M. Eduok, M. Khaled, Research in Chemical Intermediate 41 (2015) 6309-6324. https://doi.org/10.1007/s11164-014-1741-3

S. A. Umoren, U. M. Eduok, A. U. Israel, I. B. Obot, M. M. Solomon, Green Chemistry Letters and Reviews 5(3) (2012) 303-313. https://doi.org/10.1080/17518253.2011.625980

N. Soltani, N. Tavakkoli, M. Khayat Kashani, A. Mosavizadeh, E. E. Oguzie, M. R. Jalali, Journal of Industrial and Engineering Chemistry 20(5) (2014) 3217-3227. https://doi.org/10.1016/j.jiec.2013.12.002

S. Deng, X. Li, Corrosion Science 64 (2012) 253-262. https://doi.org/10.1016/j.corsci.2012.07.017

X. Li, S. Deng, H. Fu, Corrosion Science 62 (2012) 163-175. https://doi.org/10.1016/j.corsci.2012.05.008

R. Jenkins, R.L. Snyder, Introduction to X-ray Powder Diffractometry, John Willey & Sons Inc., New York, 1996. http://dx.doi.org/10.1002/9781118520994

A. Hamdy, Nour Sh. El-Gendy, Egyptian Journal of Petroleum 22 (2013) 17-25. http://dx.doi.org/10.1016/j.ejpe.2012.06.002

I. Dehri, M. Özcan, Materials Chemistry and Physics 98(2-3) (2006) 316-323. https://doi.org/10.1016/j.matchemphys.2005.09.020

T. Szauer, A. Brandt, Electrochimica Acta 26(9) (1981) 1209-1217. https://doi.org/10.1016/0013-4686(81)85107-9

I. B. Obot, N. O. Obi-Egbedi, S. A. Umoren, Corrosion Science 51 (2009) 1868-1875. http://dx.doi.org/10.1016/j.corsci.2009.05.017

O. L. Riggs Jr, R. M. Hurd, Corrosion 23(8) (1967) 252-260. http://dx.doi.org/10.5006/0010-9312-23.8.252

M. Scendo, International Journal of Electrochemical Science 8 (2013) 9201-9221. http://www.electrochemsci.org/papers/vol8/80709201.pdf

J. I. Bhat, V. D. P. Alva, International Journal of Electrochemistry 2011 (2011) 157576. http://dx.doi.org/10.4061/2011/157576

O. E. Nnabuk, A. Femi, E. E. Ebenso, International Journal of Electrochemical Science 5 (2010) 1996-2011. http://www.electrochemsci.org/papers/vol5/5121996.pdf

O. Sanni, A. P. I. Popoola, O. S. I. Fayomi, Journal of Bio- and Tribo-Corrosion 5 (2019) 88. https://doi.org/10.1007/s40735-019-0280-2

R. T. Loto, C. A. Loto, A. P. I. Popoola, T. Fedotova, Arabian Journal of Chemistry 12(8) (2015) 2270-2279. https://doi.org/10.1016/j.arabjc.2014.12.024

C. O. Akalezi, C. E. Ogukwe, E. A. Ejele, E. E. Oguzie, Interntional Journal of Corrosion and Scale Inhibition 5(3) (2016) 232-247. https://doi.org/10.17675/2305-6894-2016-5-3-4

R. T. Loto, C. A. Loto, International Journal of Electrochemical Science 7 (2012) 9423-9440. http://www.electrochemsci.org/papers/vol7/71009423.pdf

A. S. Fouda, S. M. Rashwan, M. Abdelfatah, Zaštita Materijala 60(1) (2019) 3-17. http://dx.doi.org/10.5937/zasmat1901003F

Published

19-10-2022 — Updated on 19-10-2022

How to Cite

Ofuyekpone, O. D., Adediran, A. A., Utu, O. G., Onyekpe, B. O., & Unueroh, U. G. (2022). Non-toxic leguminous plant leaf extract as an effective corrosion inhibitor of UNS S30403 in 1 M HCl: Original scientific paper. Journal of Electrochemical Science and Engineering, 13(2), 231–250. https://doi.org/10.5599/jese.1343

Issue

Section

Corrosion

Most read articles by the same author(s)