ADMET and DMPK  

Cocrystal solubility-pH and drug solubilization capacity of sodium dodecyl sulfate – mass action model for data analysis and simulation to improve design of experiments

Alex Avdeef

Abstract


This review discusses the disposition of the anionic surfactant, sodium dodecyl sulfate (SDS; i.e., sodium lauryl sulfate), to solubilize sparingly-soluble drugs above the surfactant critical micelle concentration (CMC), as quantitated by the solubilization capacity (k). A compilation of 101 published SDS k values of mostly poorly-soluble drug molecules was used to develop a prediction model as a function of the drug’s intrinsic solubility, S0, and its calculated H-bond acceptor/donor potential. In almost all cases, the surfactant was found to solubilize the neutral form of the drug. Using the mass action model, the k values were converted to drug-micelle stoichiometric binding constants, Kn, corresponding to drug-micelle equilibria in drug-saturated solutions. An in-depth case study (data from published sources) considered the micellization reactions as a function of pH of a weak base, B, (pKa 3.58, S0 52 μg/mL), where at pH 1 the BH.SDS salt was predicted to precipitate both below and above the CMC. At low SDS concentrations, two drug salts were predicted to co-precipitate: BH.Cl and BH.SDS. Solubility products of both were determined from the analysis of the reported solubility-surfactant data. Above the CMC, in a rare example, the charged form of the drug (BH+) appeared to be strongly solubilized by the surfactant. The constant for that reaction was also determined. At pH 7, the reactions were simpler, as only the neutral form of the drug was solubilized, to a significantly lesser extent than at pH 1. Case studies also featured examples of solubilization of solids in the form of cocrystals. For many cocrystal systems studied in aqueous solution, the anticipated supersaturated state is not long-lasting, as the drug component precipitates to a thermodynamically stable form, thus lowering the amount of the active ingredient available for intestinal absorption. Use of surfactant can prevent this. A recently-described method for predicting the solubility product of cocrystals (coupled with predicted k values described here) allowed for simulations of solubility-pH speciation profiles of cocrystal systems in the presence of SDS. Well in advance of any actual measurements, these simulations can be used to probe conditions favorable to the design of cocrystal experiments where SDS stabilizes cocrystal suspensions against drug precipitation over a predicted range of pH values.


Keywords


drug-micelle binding constant; solubilization capacity; supersaturation; cocrystal solubilization; solubility

Full Text:

PDF


DOI: http://dx.doi.org/10.5599/admet.505

Refbacks

  • There are currently no refbacks.


ISSN 1848-7718