J. Electrochem. Sci. Eng.  

Gas sensing technologies in combustion: A comprehensive review

Ulrich Guth, Pavel Shuk, Chad McGuire


Irrespective of the change in kind of energy to renewables there are many processes in which combustion of conventional fuels and biofuel are necessary. For cement and glass production, paper fabrication and air traffic it is absolutely essential to control the combustion processes by intelligent sensors in order to maximize the efficiency and to minimize the emission of harmful substances such as NOx and CO. Mainly oxygen sensors based on solid electrolytes and calorimetric sensors using the heat formation by catalytic combustion of CO and hydrocarbons with two resistance temperature detectors (RTD) are utilized. Recently, tunable diode laser spectroscopy (TDLS) became attractive in chemical plants. Several analytical companies are offering in-situ or extractive laser analyzers for combustion gases.


Combustion control; in situ sensors for oxygen and hydrocarbons; solid electrolyte sensors; calorimetric sensors; tunable diode laser spectroscopyy

Full Text:

PDF (1,737 kB)


P. Shuk, C. McGuire, Sensors & Transducers 217 (2017) 1-13

N. Docquier, S. Candel, Progress in Energy and Combustion Science 28 (2002) 107–150

Emerson comubstions analyzers, https://www.emerson.com/en-us/automation/measurement-instrumentation/gas-analysis/about-combustion-analysis, date accessed January 28, 2020.

H. Peters, H.-H. Möbius, Procedure for the gas analysis at elevated temperatures using galvanic solid electrolyte elements, DD-Patent 21673 (1958)

J. Weissbart, R. Ruka, Review of Scientific Instruments 32 (1961) 593-595

H.-H. Möbius, in: Sensors a comprehensive survey, Vol. 3, W. Göpel, J. Hesse, J. N. Zemel, Eds., New York, VCH, 1992, p. 1105

U. Guth, in: Electrochemical dictionary, A. Bard, G. Inzelt, F. Scholz, Eds., 2nd extended Edition, Springer, Heidelberg, Dordrecht, London, New York, 2012, p. 400

W. C. Maskell, Solid State Ionics 134 (2000) 43-50

S. Zhuiykov, Electrochemistry of zirconia gas sensors, CRC Press, Boca Raton, 2008, p. 320

P. Shuk, Technisches Messen 77 (2010) 19-23

P. Shuk, Ed Bailey, U. Guth, Sensors & Transducers 90 (2008) 174-184

P. Shuk, R. Jantz, H.-U. Guth, International Journal on Smart Sensing and Intelligent Systems 5 (2012) 233-245

P. Shuk, R. Manoharan, T. Blanar, R. Molnar, M. Keyes, Sulfur resistant sensors, US-Patent 7,527,717 B 2 (2003)

E. Flegel, C. Vonau, U. Guth, Technisches Messen 84 (2017) 635–643

P. Shuk, E. Bailey, J. Zosel, U. Guth, Ionics 15 (2009) 131–138

O. Driesner, F. Gumprecht, U. Guth, Journal of Sensors and Sensor Systems 6 (2017) 327-330

U. Guth, H.-D. Wiemhöfer, in: Gas Sensors Based on Conducting Metal Oxides, N. Barsan, K. Schierbaum, Eds., Elsevier, Amsterdam, 2019, p. 13

X. Zhang, H. Kohler, M. Schwotzer, U. Guth, Sensors & Actuators B: Chemical 217 (2015) 107-112

A. Ruchelts, N. Donker, D. Schönauer-Kamin, R. Moss, J. Zosel, U. Guth, M. Mertig, Sensors & Actuators B: Chemical 290 (2019) 53-58

P. Shuk, C. McGuire, E. Brosha, Sensors & Transducers 229 (2019) 1-10

P. Shuk, P. Murphy, in: Processing of the 1st International Conference on Sensing Technology, Palmerston North, New Zealand, 21-23 November 2005, p. 226

E. D. Hinkley, P.L. Kelley, Science 171 (1971) 635–639

K.W. Nill, F.A. Blum, A.R. Calawa, T.C. Harman, Applied Physics Letters 19 (1971) 79-82

R. M. Mihalcea, D. S. Baer, R. K. Hanson, Applied Optics 36 (1997) 8745-8752

G. B. Rieker, J. B. Jeffries, R. K Hanson, Applied Optics 48 (2009) 5546–5560

R. K. Hanson, Proceedings of the Combustion Institute 33 (2011) 1-40

P. Shuk, in: Sensors for Everyday Life, S. C. Mukhopadhyay et al. Eds., Springer, Heidelberg - New York, 2017, p. 81

Y. Krishna, S. O’Byrne, J. Kurtz, Applied Optics 53 (2014) 4128-4135

Yokogawa Electric Corp. http://www.yokogawa.com/an/faq/tdls/spec_1.htm

DOI: http://dx.doi.org/10.5599/jese.743

jESE : : Open Access Journal  :  : ISSN 1847-9286