J. Electrochem. Sci. Eng.  

Principles of the express method for controlling interelectrode space condition during wire electrochemical processing

Vasyl Osypenko, Oleksandr Plakhotnyi, Oleksii Timchenko

Abstract


In the practical implementation of the sequential wire electrical discharge machining – pulsed electrochemical machining (WEDM – PECM) technology and in order to perform high quality electrochemical processing, there is a need for the real-time operational control of electrical parameters of inter-electrode space and corresponding adaptive correction of amplitude-frequency power supply parameters (AFPSP). In the context presented by the authors, a mathematical apparatus and an algorithm of operational galvanostatic mode monitoring of anode dissolution using wire electrode-tool are proposed. This will allow adaptive adjustment of AFPSP to ensure controlled passage of electrochemical reactions and significantly increase process stability, dissolved surface layer thickness uniformity along entire electrode tool movement trajectory and resulting surface quality.


Keywords


Wire electrical discharge machining; pulsed electrochemical machining; current and voltage waveforms; process monitoring; surface finishing

Full Text:

PDF (801 kB)

References


V. І. Osypenko, S. P. Poliakov, D. О. Stupak, R. І. Savisko UA 10153 МPК 7В23Н1/02 (2005).

Y. Jiang, W. Zhao, X. Xi, L. Gu, X. Kang, International Journal of Advanced Manufacturing Technology 61(1-4) (2012) 171-183.

R. Schuster, V. Kirchner, P. Allongue, G. Ertl, Science 289(5476) (2000) 98-101.

S. Skoczypiec, A. Ruszaj, Precision Engineering 38(3) (2014) 680-690.

S. Skoczypiec, International Journal of Advanced Manufacturing Technology 87(1-4) (2016) 177-187.

C. Zhao, L. Xu, Journal of Electrochemical Science and Engineering 8(4) (2018) 321-330.

J. A. Kenney, G. S. Hwang , Nanotechnology 16(7) (2005) S309.

S. Galanin, Elektrokhimicheskaya obrabotka metallov i splavov mikrosekundnymi impul’sami toka (Electrochemical Treatment of Metals and Alloys by Microsecond Current Pulses), Kostrom. Gos. Tekh. Univ., Kostroma, Russia, 2001, p.118 (in Russian).

S. Galanin, I. Kalinnikov, Surface Engineering and Applied Electrochemistry 44(5) (2008) 359-366.

M. Mithu, G. Fantoni, J. Ciampi, International Journal of Advanced Manufacturing Technology 55(9-12) (2011) 921-933.

G. Wollenberg, H. Schulze, H. Trautmann, G. Kappmeyer, Proceeedings of the 15th ISEM, (2007) 335-338.

O. Weber, A. Rebschlager, P. Steuer, D. Bahre, Proceedings of the European COMSOL conference, Rotterdam, 2013.

J. Sun, E. Taylor, R. Srinivasan, Journal of Materials Processing Technology 108(3) (2001) 356-368.

M. A. Lavrent'ev, B. V. Shabat, Methods of the theory of function of complex variable, Nauka, Moscow, 1987, p.544 (in Russian).

V. S. Bagotsky, Fundamentals of Electrochemistry. John Wiley & Sons, Inc.: Hoboken, NJ, 2005, p.752.

J. Newman, K.E. Thomas-Alyea, Electrochemical Systems, John Wiley & Sons, NY, 2012, p.672.

F. Han, W. Chen, W. Ying, Procedia CIRP 68 (2018) 493-498.

V. P. Zhitnikov, A. N. Zaytsev, Impul’snaya elektrokhimicheskaya razmernaya obrabotka: mono-grafiya (Pulse electrochemical machining: monograph), Mashynostroenye, Moscow, 2008, p. 413 (in Russian).

V. I. Osipenko, A. P. Plakhotny, A. Yu. Denisenko, Pratsi Odeskoho politekhnichnoho universytetu 1(43) (2014) 55-60.




DOI: http://dx.doi.org/10.5599/jese.660



jESE : : Open Access Journal  :  : ISSN 1847-9286