J. Electrochem. Sci. Eng.  

Voltammetric growth of tin oxides in borate solution of pH 8.7

Tiago Brandão Costa, Tania Maria Cavalcanti Nogueira, Ladário da Silva


Voltammetry has been employed to study the growth of tin oxides in buffer solution of 0.3 mol L-1 H3BO3 + 0.15 mol L-1 Na2B4O7·10H2O (pH 8.7). Voltammetric data were compared with the results of tin in a phosphate solution of pH 8.7, presented in the previous work, in order to study the influence of these anions on the growth of tin oxides. The thicknesses of grown oxides were determined using ex-situ ellipsometric technique and the volume per charge unity of the film, Vf, was calculated for different charge densities of the film. The results showed that less dense films were obtained at higher sweep rates. Tin oxide films grown in phosphate solution at 2 mV s-1 were denser than those grown in borate solution at the same sweep rate. The kinetic parameters, determined applying the ohmic model, showed that there are no significant differences between the kinetics at the metal/film interface of tin in borate and tin in phosphate solutions. Despite these facts, the ionic specific resistivity for oxide film growth in borate solution were significantly higher than in phosphate solution. This result indicates that incorporation of anions occurs during the growth of the films.


Tin oxide; Ohmic Model; Voltammetry; Ellipsometry; Variable ionic resistivity

Full Text:

PDF (1,712 kB)


H. Do Duc, P. Tissot, Corrosion Science 19 (1979) 179-190.

S. D. Kapusta, N. Hackerman, Electrochimica Acta 25 (1980) 1625-1639.

S. D. Kapusta, N. Hackerman, Electrochimica Acta 25 (1980) 949-955.

S. D. Kapusta, N. Hackerman, Electrochimica Acta 25 (1980) 1001-1006.

S. D. Kapusta, N. Hackerman, Electrochimica Acta 25 (1982) 1886-1889.

A. Ammar, S. Darwish, M. W. Khalil, S. El-Taher, Electrochimica Acta 33 (1988) 231-238.

M. Metikos-Hukovic, M. Seruga, F. Ferina, Ber. Bunsenges Phys. Chem 96 (1992) 799-805.

M. Metikos-Hukovic, A. Resetic, V. Gvozdic, Electrochimica Acta 40 (1995) 1777-1779.

C. A. Gervasi, P. E. Alvarez, Corrosion Science 47 (2005) 69 -78.

V. Brunetti, M. L. Teijelo, Journal of Electroanalytical Chemistry 613 (2008) 9-15.

N. A. Al-Mobarak, Chemistry and Technology of Fuels and Oils 48 (2012) 321-330.

T. B. Costa, T. M. C. Nogueira, L. Silva, Journal of Electrochemical Science and Engineering. 6 (2016) 303-314.

C. V. D’Alkaine, P. C. Tulio, M. A. C. Berton, Electrochimica Acta 49 (2004) 1989-1997.

C. V. D’Alkaine, L. M. N. Souza, F. C. Nart, Corrosion Science 34 (1993) 129-149.

C. V. D’Alkaine, M. N. Boucherit, Journal of the Electrochemical Society 10 (1997) 3331-3336.

C. V. D’Alkaine, M. A. Santanna, Journal of Electroanalytical Chemistry 457 (1998) 13-21.

T. B. Costa, C. V. D’Alkaine, T. M. C. Nogueira, 67th ABM International Congress, Rio de Janeiro, Brazil, 2012, p. 3162.

R. Díaz, I. Díez-Pérez et al, Journal of Brazilian Chemical Society 14 (2003) 523-529.

M. Hernández Ubeda, M.A.Pérez et al, Journal of the Electrochemical Society 152(1) (2005) A37-A41.

Z. Szklarska-Smialowska, W. Kozlowski, Journal of the Electrochemical Society 131 (1984) 499-505.

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications. John Wiley & Sons Ltd, Tokyo, Japan, 2003.

L. F. N. Guedes et al, Journal of Solid State Electrochemistry 20 (2016) 2517-2523.

W. Kozlowski, J. Flis, Corrosion Science 32 (1991) 861-875.

D. E. Aspnes, Thin Solid Films 571(3) (2014) 334-344.

A. J. Bard and L. R. Faulkner, Electrochemical Methods Fundamentals and Applications, John Wiley & Sons, New York, United States, 2001.

DOI: http://dx.doi.org/10.5599/jese.377


  • There are currently no refbacks.

jESE : : Open Access Journal  :  : ISSN 1847-9286